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Abstract

We devise a novel statistical method for deconvolving multivariate geochronology and geochem-
istry datasets to characterize sediment sources. The approach employs a third-order constrained
Tucker-1 tensor decomposition to estimate the probability distributions of multiple features in
sediment samples. By integrating kernel density estimation with matrix-tensor factorization, the
model quantitatively determines the distributions and mixing proportions of sediment sources.
The methodology introduces a numerical test for rank estimation to define the number of latent
sources, and uses a maximum-likelihood approach to correlate individual detrital grains to these
latent sources based on an arbitrary number of features. The method’s efficacy is validated
through a numerical experiment with detrital zircon data that captures natural variability
associated with temporal changes in crustal thickness in the Andes. The findings hold poten-
tial implications for resolving sediment sources, determining sediment mixing, enhancing the
understanding of sediment transport processes, characterizing the lithology, tectonic motion, or
metallogenic potential of sediment sources. This method is adaptable to other data de-mixing
problems and is available in a publicly released software package.
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1 Introduction

Eroded clastic material, once deposited in a sedimentary sink, preserves a complex record of its
source and the various processes it underwent during transport, deposition, and diagenesis [10, 19,
60]. In this context, a sink refers to any sample that can be considered a mixture of detritus derived
from multiple sediment sources (Fig. 1.1). Detrital zircon grains, in particular, serve as discrete
carriers of information about their respective sources. They capture a record that includes the eroded
material’s mineralogical and geochemical characteristics, as well as changes resulting from selective
deposition, weathering, or mixing. A statistical model can provide insight into the sediment mixture
process and help to trace sediment provenance. The accuracy with which the actual proportions of
the various contributing sources can be estimated necessarily degrades as the material undergoes
changes during transport [14, 20]. For this reason, the refractory nature of detrital zircons makes
uranium-lead (U-Pb) geochronology an especially powerful and versatile tool, widely used to study
the distribution of sediments, the development of sedimentary basins, tectonic plate motion, and
chronostratigraphy [9, 16, 23, 27, 41, 46, 47].

While zircons have the potential to identify sources based on a single feature such as U-Pb age,
this method is limited when sources have similar crystallization ages [15, 45, 48]. Various methods
have been developed to discriminate sources that have similar detrital zircon U-Pb spectra [15,
38]. These methods often include additional features such as thermochronology, secondary isotopic
analyses (e.g., Lu-Hf), or trace and rare earth element (TREE) analyses to discriminate between
otherwise similar sources [7, 17, 31, 40, 45].

Beyond source discrimination, trace element analysis of zircons yields valuable petrogenetic
information about the magmas from which the zircons originated. This information is crucial for
tracking crustal evolution and identifying ore-bearing lithologies [25]. Multiple features can be
used to trace the petrogenetic characteristics of source magmas, including, for example, titanium
concentrations to track crystallization temperatures [55, 56]; europium anomalies to trace plagioclase
crystalization; strontium-yttrium (Sr/Y) ratios to infer crustal thickness [12, 51, 52]; and a suite of
26 trace element concentrations to determine the parent rock type [4, 51].

The low diffusion rates of trace elements such as U, hafnium (Hf), and thorium (Th) in zircon,
combined with its physical and chemical resilience, make these trace elements reliable fingerprints
of sediment provenance. Our ability to acquire these multivariate datasets, however, has exceeded
the capability of the available analytical tools that can fully exploit and quantitatively model zircon
geochronology and geochemistry data. For example, methods such as forward Monte Carlo mixture
modelling and nonnegative matrix factorization [40, 48] are constrained to one or two features
and therefore limited in their effectiveness in sediment provenance or crustal evolution analyses, or
economic geology applications.

1.1 Contributions

This paper describes a statistical approach to deconvolving detrital geochronology and geochemistry
datasets into their constituent sources using an arbitrary number of measured features. Our approach
is based on a statistical model (Sec. 2) representing sediment sinks as product probability distributions
on their features. The decomposition approach estimates these probability distributions through the
mixed sedimentary data. Section 1.2 describes the geology of this model.

We design a computational workflow that begins by using a density estimation technique to
quantize the data into a three-dimensional tensor with nonnegative entries, derived from samples of
the estimated densities (Sec. 3). This tensor is then decomposed using a model-fitting algorithm
(Sec. 4), which factorizes it into a tensor predicting the distributions of materials contributed by each
latent source, and a matrix providing their relative proportions. Because the number of latent sources
is unknown, we have developed a statistical test (Sec. 4.5) to estimate the optimal rank for the
decomposition. Additionally, we introduce a maximum-likelihood method for correlating individual
detrital grains to latent sources based on their multivariate features (Sec. 5). This computational
toolchain (Sec. 6) is implemented in a fully reproducible software package featuring efficient algorithms
whose computational costs scale linearly with the number of features.
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Figure 1.1: Schematic of the geological model depicting the physical downstream mixing from
multiple sources (3 in total) into multiple sinks (20 in total). The model measures multiple features
(represented by different colors) of the sedimentary grains (represented by different shapes). The aim
is to extract three key elements from the sink data: (1) the distribution of source features, (2) the
mixing proportions (shown in the table below each sink), and (3) the source label (oval, rectangle, or
star) for each grain.

We demonstrate in Sec. 7 the accuracy of this method by applying it to the Sundell et al. [51] data
set of grain samples with known sinks and sources. To evaluate our approach, we apply it to data
from the twenty sinks, and correctly determine the unknown source distributions and their mixing
proportions to within 10 and 5 percent, respectively, of their known counterparts. Furthermore,
correlation of individual detrital grains to their factorized sources based on their multivariate features
is approximately 90% accurate, which is significantly more accurate than a similar approach applied
to univariate or bivariate data sets.

We provide in Table 1 a glossary of the mathematical symbols used throughout the paper.
Section 8 concludes with a discussion of possible refinements and extensions of our method.

1.2 Geological framework and prior approaches

Most prior work has focused on quantifying the similarity between observed samples based on
one or two measured features rather than on sediment mixing or sediment source characterization.
However, quantitative methods like principal component analysis [44], Bhattacharya distance [6, 18],
“mismatch” or “likeness” [2, 34], cross-correlation [37], or Kolmogorov-Smirnov or Kuiper distances [13,
39], often fail to discriminate between sediment sources with similar feature distributions. Even
bivariate approaches [40, 47], though they provide some improvement, are still limited to two features,
reducing their effectiveness for analyzing complex, multivariate detrital datasets such as those from
petrochronological or triple-dating studies [8, 11]. Other multivariate techniques, such as 3-way
multidimensional scaling (MDS) or generalized Procrustes analysis (GPA), help qualitatively visualize
sample similarities [54]. Our approach advances the available quantitative tools for identifying
potential sediment sources, which in combination with recent semi-qualitative analyses such as [53],
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facilitates a more comprehensive analysis.
Studies that have addressed sediment mixing or characterization of unknown sediment sources

have also done so on the basis of just one or two features. The available methods include deterministic
or Monte Carlo forward mixing [2, 26, 49, 59], and inversion via nonnegative matrix factorization [24,
38, 40, 42, 50, 58], which simplifies the data into a lower-dimensional representation. There are
two main objectives of these studies. First, to recover the proportions in which individual sources
contribute to each sink sample, and second, to infer the features of the sediment sources when they
are unknown or no longer exist. The identified sources must match the features measured in the
detrital samples, and the analysis must generate mixing coefficients that accurately represent the
linear combinations of these source features.

Our approach significantly diverges from previous methods by incorporating multiple features
simultaneously from zircon grains. By considering multiple features simultaneously, our approach
yields more a more accurate decomposition into sources, which can enhance the accuracy with which
individual grains can be identified with sources. Additionally, the model and the attendant algorithm
scale effectively with additional features, enhancing its applicability to complex geological datasets.

2 A statistical mixing model

The main assumption of our model is that the sink data can be represented as a mixture of a small
number of distinct sources. By “small”, we mean a number that is much less than the total number
of input sinks [36]. The sink data is modeled as a mixture of these sources with unknown mixing
proportions, and the goal is to estimate both the source distributions and these proportions.

Given these assumptions, the input data sets must be restricted to features that can be represented
as distributions, following the logic outlined by Vermeesch et al. [53, Section 2]. Additionally, features
should be derived from transport invariant subpopulations [59, 60]. Features that undergo post-
depositional modification, such as the chemical index of alteration [29] based on bulk geochemistry,
should not be included because their proportions may change during diagenesis, making them
inconsistent with the mixing model’s assumptions. Similarly, features significantly altered during
transport should also be excluded from the data set. For instance, bulk clay mineralogy should not
be modeled alongside zircon geochemistry data, as they may be subject to different processes.

We formalize this model as follows. Let βrj represent the distribution of the quantity of feature j
within source r, and let Br denote the overall feature distribution for source r. For now, we consider
βrj and Br as abstract distributions. In Sec. 3.2, as part of the tensor decomposition, we associate
these with discrete counterparts. We define Br as the product of the individual feature distributions,
that is,

Br =
ą

j∈[J]

βrj for each source r ∈ [R]. (2.1)

Our second key assumption is that the distribution of features within each sink is a mixture of
these source distributions. Let Si represent the distribution of features within sink i. Each sink
distribution Si is therefore a convex combination of the R source distributions:

Si =
∑
r∈[R]

αirBr,
∑
r∈[R]

αir = 1, αir ≥ 0 for each sink i ∈ [I], (2.2)

where the scalars αir represent the (unknown) convex weights of contributions for source r in sink i.
Equations (2.1) and (2.2) together imply that the sink distributions can also be decomposed into
product distributions:

Si =
∑
r∈[R]

ą

j∈[J]

αirβrj for each sink i ∈ [I]. (2.3)

In summary, the unknown sources B1, . . . , BR, which we refer to as latent sources, each consist
of different continuous product distributions of the J features. We assume that individual zircon
grains collected from sink i originate from a single source r according to the proportion αir, and that
the grains are indivisible. The overarching goal is to estimate the source distributions βrj and the
mixing proportions αir from the sink data.
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3 Sink distribution estimation

To estimate the sink distributions Si from unprocessed zircon grain samples, we employ a two-step
method explained in the sections that follow. First, we apply kernel density estimation (KDE) [43] to
each feature across all sinks, which turns the raw data into continuous probability density functions
that mirror the underlying distributional characteristics of the features. Next, we discretize these
continuous density estimates into a new batch of samples, which are gathered into a tensor structure
covering all sink-feature pairs. This approach of using samples from continuous density estimates
rather than the original raw data improves our ability to compare similar features across various
sinks, without being affected by differences in the number of grains each sink might have.

3.1 Feature sampling and continuous density estimation

Let {gn
i [j]}n∈[Ni] denote the Ni observations obtained for feature j from grains sampled from sink i.

Thus, gn
i is a vector of length J where each coordinate corresponds to a measurement from a different

feature. Consequently, it follows from the sink product model Eq. (2.2) that each coordinate gn
i [j] is

a random variable distributed according to a mixture of source features j represented by the sink i.
In particular, each measurement gn

i [j] is distributed according to the mixture

gn
i [j] ∼

∑
r∈[R]

αirβrj .

We estimate the continuous density of each feature j for each sink i using a KDE built from the
standard Gaussian kernel κ(x) = exp(−x2/2)/

√
2π. The corresponding KDE of the sink-feature pair

(i, j) is the smooth univariate density function

fij(x) =
1

Ni

∑
n∈[Ni]

1

hj
κ

(
x− gn

i [j]

hj

)
,

where the positive bandwidths scalars hj for each feature j are chosen to minimize the mean integrated
square error of the KDE. (Section 6.2 outlines the methodology used to estimate these bandwidths.)
The KDE fij approximates the probability

P
(
X ∈ [a, b]

∣∣∣ X ∼
∑

r∈[R] αirβrj

)
=

∫ b

a

fij(x) dx.

Figure 3.1 shows an example of a KDE produced from age measurements of zircon grains from a
single sink and the KDEs for all sinks for the same feature.

3.2 Discretization and tensor construction

We discretize the continuous density estimates on a uniform grid across all sink-feature pairs.
Specifically, for each feature j, we sample the KDEs fij at K points {xjk}k∈[K]. The grid spacing
∆xj is uniform for each feature but varies between features due to differences in their value ranges.
Although a more complex nonuniform spacing is possible, we opt for uniform spacing for simplicity.
Details of the discretization, including the number of samples K, bandwidths hj , grid spacing ∆xj ,
and the sampling domain of the KDEs, are crucial in practice and are discussed in Sec. 6.

We obtain a discrete approximation at each sample point xjk as

fij(xjk)∆xj ≈ P (X ∈ [xjk, xjk +∆xj ] | X ∼
∑

r αirβjr, ) ,

which is based on the assumption that sink distributions are mixtures of the source distributions, as
detailed in Eq. (2.3). These resampled points are indexed by a source-feature-sample triple index
(i, j, k) and assembled into the elements of a third-order tensor as

Y[i, j, k] = fij(xjk)∆xj for each (i, j, k) ∈ [I]× [J ]× [K]. (3.1)
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Figure 3.1: (Left) Histogram with overlaid kernel density estimates (KDEs) and raw grain data (rug
plot) for three features (Age, Eu Anomaly, Ti Temperature) for a single sink (i = 1). (Right) KDEs
for these same features across all 20 sinks, illustrating variations in distributions. Although the
age and Eu anomaly measurements are necessarily positive, the Gaussian kernel—and thus also the
KDE—has unbounded support over real numbers.
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Figure 3.2: Schematic of the KDE discretization and embedding into the input tensor Y. Every
horizontal slice of Y, as defined by Eq. (3.1), corresponds to a sink. For each sink there are J feature
distributions that are collected into a matrix. The first three features of sink 1 are highlighted here.

Thus, each element of the nonnegative tensor Y[i, j, k] quantifies the probability that a grain from
sink i exhibits feature j within the kth interval [xkj , xkj +∆xj ]. Figure 3.2 depicts a schematic of this
tensor model. The slice Y[i, :, :] for each sink i is a matrix that collects the discretized distributions
for each feature. The fibers of each slice Y[i, j, :] are the discretized distributions for each feature j in
sink i, and

∑
k∈[K] Y[i, j, k] ≈ 1 for each i ∈ [I] and j ∈ [J ]. The tensor Y serves as the input for our

tensor decomposition algorithm, which is elaborated in Sec. 4.

4 Tensor decomposition over probability simplices

This section outlines the decomposition of the 3-way empirical discrete distribution tensor, Y

(cf. Sec. 3.2), into a smaller latent-distribution tensor and proportion matrix that quantifies the
contributions of latent sources to sinks. We use a Tucker decomposition variant, tailored to specific
tensor structures, where each mode-3 fiber of the core tensor and each row of the proportion matrix
is nonnegative and sum to one, thus fitting within probability simplices. This model aligns with our
hypothesis that sinks are mixtures of several latent sources; cf. Eq. (2.2). The decomposition process
uses a block coordinate-descent algorithm, as detailed in Sec. 4.4. For a comprehensive introduction
to tensor notation and decompositions, consult Kolda and Bader [22].

4.1 Tucker decomposition

The Tucker decomposition factorizes a 3-way real-valued tensor T (dimensions t1 × t2 × t3) into
a core tensor B (dimensions m1 × m2 × m3) and three factor matrices A1, A2, and A3 (with
corresponding dimensions t1 ×m1, t2 ×m2, and t3 ×m3, respectively). This decomposition involves
n-mode multiplication, defined through the matricization (or unfolding) of the tensors. Specifically,
the n-mode matricization, denoted as B(n) (similarly for T), reorganizes the elements of B into a
p1 × p2 matrix, where p1 = mn and p2 is the product of the other dimensions

∏
i ̸=n mi. The order of

unfolding is arbitrary so long as it is consistent throughout all computations.
The n-mode product, defined as B×(n)An, involves matrix multiplication between the matricized

version of B and the matrix A, i.e.,

R = B×(n) An ⇐⇒ R(n) = AnB(n), (4.1)
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Figure 4.1: An illustration of Tucker-1; see Eq. (4.3). By fixing two of the factors A2 and A3 in the
full Tucker decomposition Eq. (4.2), we obtain the Tucker-1 decomposition model.

which defines the transformation process for each mode.
The full Tucker decomposition of T is then expressed as

T = B×1 A1 ×2 A2 ×3 A3, (4.2)

where B acts as a compressed representation of T. If the core tensor is chosen small, then the
decomposition may only approximate the original tensor, and in that case B is a lossy compression
of T.

4.2 Tucker-1 variant over the probability simplex

Our model employs the Tucker-1 variant, which simplifies the standard Tucker model by setting the
second and third factor matrices, A2 and A3 in Eq. (4.2), to identity matrices. For simplicity, we
drop the unneeded subscripts on the factor matrix A:

T = B×1 A.

This approach, depicted in Fig. 4.1, focuses compression along a single mode, reducing complexity
and improving interpretability, especially when dimensionality reduction is primarily desired in one
dimension. We adopt the notation

T = AB. (4.3)

This simplified model aligns with our goal of identifying the latent sources and their mixing
proportions. We approximate the empirical density tensor Y as a product of a nonnegative proportion
matrix A and a nonnegative tensor B, with constraints that ensure all elements remain nonnegative
and that the distributions sum to one along the designated fibers and rows. These constraints aid in
maintaining the probabilistic interpretations of the tensor entries. The computed decomposition of Y
is then

Y = AB+ E,

where E captures noise and other unmodelled effects. It follows from Eq. (4.1) that this decomposition
is equivalent simplex-constrained matrix factorization under any flattening of Y and B. However,
the tensor formulation maintains the inherent relationships among the various quantities.

Within the framework of Eq. (2.2), the I ×R proportion matrix A provides mixture coefficients
for each latent source, while the mode-3 fibers of the R× J ×K core tensor B represent the feature
distributions of latent sources. Elementwise, this relationship is modeled as

Y[i, j, k] ≈
R∑

r=1

A[i, r] ·B[r, j, k]. (4.4)

9



Figure 4.2: The factorization Eq. (4.4) reveals how the sources, given by slices of B contribute to
each sink in different proportions, given by the entries of A in Eq. (4.5).

Each element
A[i, r] = αir (4.5)

gives the proportion of each source r in sink i as defined by Eq. (2.2); see also Fig. 4.2. Similarly, we
interpret the elements of the latent source distribution tensor B analogously to Eq. (3.1):

B[r, j, k] = βrj(xjk)∆xj ≈ P
(
X ∈

[
xjk, xj(k+1)

] ∣∣ X ∼ βrj

)
. (4.6)

Here the first dimension of B is indexed over sources, while the first index in Y is indexed over sinks,
thus ensuring a consistent interpretation across both tensors.

4.3 The constrained matrix-tensor factorization model

We employ a block coordinate descent algorithm to compute the approximation Eq. (4.4) as the
solution of the constrained least-squares problem

min
A,B

{
ℓ(A,B) := 1

2 ∥Y−AB∥2F
∣∣∣A ∈ ∆A, B ∈ ∆B

}
, (4.7)

where the norm ∥·∥F defines the root of sum-of-squares objective and the constraints

∆A =
{
A ∈ RI×R

+

∣∣∣∑r∈[R] A[i, r] = 1 ∀i ∈ [I]
}
, (4.8a)

∆B =
{
B ∈ RR×J×K

+

∣∣∣∑k∈[K] B[r, j, k] = 1 ∀(r, j) ∈ [R]× [J ]
}
, (4.8b)

preserve the probabilistic interpretations of the proportion matrix A and the source-feature tensor B.
A benefit of transforming the original recorded data values into probabilities is the implicit

normalization of the measurements obtained across the various features, rendering them unit-
independent. This normalization is crucial because it prevents biases that might otherwise favour
features with larger scale units over those with smaller ones. Without this transformation, the
model’s fit could disproportionately reflect the influence of features with larger numerical values.

4.4 The block coordinate descent algorithm

This section describes our implementation of the block coordinate descent algorithm for nonnegative
tensor factorization, as developed by Xu and Yin [61]. The core of this algorithm involves the concept
of block convexity : the objective function ℓ in Eq. (4.7) is convex with respect to each block of
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Algorithm 1: Simplex constrained Tucker-1 decomposition

1 Input: Y ∈ RI×J×K
+ s.t.

∑
k Yijk = 1 ∀i, j, rank R ∈ [I]

2 Initialize A1 ∈ ∆A and B1 ∈ ∆B

3 for t = 1, 2, . . . do
4 if converged then break

5 At+1 = PA

(
At − 1

LA
∇Aℓ(A

t,Bt)
)

[projected gradient update to A]

6 Bt+1 = PB

(
Bt − 1

LB
∇Bℓ(At+1,Bt)

)
[projected gradient update to B]

7 Output: At, Bt

variables, A or B, when the other block is fixed. Thus, while ℓ is not convex jointly over (A,B),
each block update can be approached as a convex optimization problem.

Each iteration of the algorithm improves the fit by alternately fixing each block and updating the
other. For each block, we employ a projected-gradient step, where the step sizes 1/LA and 1/LB are
derived, respectively, from the Lipchitz constants of the gradients of the functions ℓ(·,B) and ℓ(A, ·).
The Euclidean projections PA and PB enforce the constraints by ensuring that the updates remain
within the feasible sets defined by C∆A and C∆B. This procedure is outlined in Algorithm 1.

A significant adaptation in our implementation, relative to that of Xu and Yin, is our choice
to preserve the tensor and matrix structures of the data throughout the computation rather than
flattening them into matrices for updates. This approach, while mathematically equivalent to the
flattening approach, offers conceptual clarity and aligns more naturally with the tensor structure
of the data. This choice simplifies the implementation and enhances the interpretability of the
algorithm.

4.5 Rank estimation

The effectiveness of the tensor decomposition approach depends heavily on choosing an appropriate
rank R, which represents the number of latent sources in the model. Determining the optimal rank
is crucial because it balances the model’s complexity against its ability to accurately fit the observed
data [3, 30, 35, 38].

In situations where we have no prior information about the number of sources, we use a method
that identifies the rank at the point of maximum curvature in the relationship between the model’s
rank and its misfit with the observed data [35]. This method involves numerically estimating the
second derivative of the loss function with respect to the rank using 5-point centered finite difference
estimates, except at the boundaries, which are one-sided [1, Table 25.2]. The optimal rank R̂ is
selected by maximizing the curvature of the loss function ℓ(R) := ℓ(AR,BR), which measures the
discrepancy between the empirical distribution tensor Y and its factorized approximation at rank R,
i.e.,

R̂ = argmax
R∈[I]

ℓ′′(R)

(1 + ℓ′(R)2)1.5
. (4.9)

Here, ℓ′(R) and ℓ′′(R) are the first and second derivatives of the loss function with respect to
the rank, evaluated numerically. This formula captures the most significant change in the rate
of improvement in the model fit as rank increases, suggesting the point beyond which additional
complexity (higher rank) does not yield proportionate gains in fitting the data. As suggested by
Satopää et al. [35], we can first normalize the input-output pairs (R, ℓ(R)) to the unit square to
ensure that the curvature metric is scale-invariant before estimating the first and second derivatives
and applying the formula Eq. (4.9).

The maximum rank considered, I, corresponds to the number of sinks in the data set and is the
size of the first dimension of Y. This choice represents a scenario where each sink is modeled as a
unique source, and the mixing proportions are trivial. A practical approach to rank selection is to
start with R = 1 and incrementally test higher ranks until the rate of improvement in model fit
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diminishes, as indicated by the curvature metric. This methodology ensures that the chosen rank is
justified based on the model’s performance, and also keeps the computational burden manageable.
Depending on the outcome of these tests and the available computational resources, it may be
feasible to explore ranks up to I, or to stop at a lower rank if the gains in model fit are minimal.
Figure 7.2 illustrates the rank estimation process for our experimental data set. In practice, we find
the estimated rank to be robust to the maximum rank considered. For this reason, we only consider
R ∈ [7] in Sec. 7.2.1 to avoid computing more expensive decompositions for larger ranks.

5 Grain source identification

After identifying the latent source distributions, we systematically categorize each grain according to
its most likely origin. We use the features of the individual zircon grains to determine the likelihood
that their multivariate feature combinations originate from one of the inferred multivariate source
distributions, and assign each grain to the source with the highest likelihood.

Although the features are not necessarily independent we approximate the probability that a
grain feature vector g originates from a particular source r by the product of the probabilities that
each feature j of g originates from the corresponding source distribution βrj . This probability is
computed as

pr = P(g ∈ Vg | g ∼ Br) =
∏
j∈[J]

P
(
xjkj ≤ g[j] ≤ xj(kj+1)

∣∣∣ g[j] ∼ βrj

)
,

where Vg = [x1k1
, x1(k1+1)]×· · ·× [xJkJ

, xJ(kJ+1)] forms a J-array of tuples within which the features
of the grain lie. The product distribution Br, defined by (2.1), encapsulates the joint distribution of
the features for source r. The index kj indicates the interval [xjk1

, xj(k1+1)] that g[j] falls within.
These sampling points reference the discretization detailed in Sec. 3.2.

The grain g is assigned a label from the source distribution Br̂ where r̂ = argmaxrpr, and pr is
approximated using the estimated source distributions contained in the core tensor B, i.e.,

pr =

J∏
j=1

βrj(xjk̂j
) ≈

J∏
j=1

1

∆xj
B[r, j, k̂j ],

where we set the index

k̂j =


1 if g[j] < xj1

kj if xjkj
≤ g[j] < xj(kj+1)

K if g[j] ≥ xjK .

See Eq. (4.6).
In practice, we can enhance the accuracy of estimating the individual feature probabilities shown

in the left-hand side of (5) by averaging the value B[r, j, k̂j ] with its neighboring value B[r, j, k̂j + 1].
This approach is analogous to using a trapezoidal estimate for calculating the area under the density
function, as opposed to using just the value at the left end point. For even more precise estimates,
we could interpolate the estimated densities B[r, j, :] into a continuous function β̃rj using techniques
like splines or a weighted moving average, which would provide a smoother and more accurate
representation of the density functions.

6 Software implementation

Our computational approach is implemented in the Julia programming language [5] and is available
as a fully-reproducible package from the GitHub repository SedimentSourceAnalysis.jl [33]. The
tensor factorization code is based on MatrixTensorFactor.jl [32]. Here, we detail the key aspects
of the software implementation, including the discretization of the kernel density estimates, the
optimization algorithm, and the rank estimation procedure. We also discuss the grain source
identification process and the visualization of the results.
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Algorithm 2: Relaxed constraint Tucker-1 Decomposition

1 Input: Y ∈ RI×J×K
+ s.t.

∑
k Yijk = 1 ∀i, j, and rank R ∈ [I]

2 Initialize A1 ∈ ∆A and B1 ∈ ∆B

3 for t = 1, 2, . . . do
4 if converged then break

5 At+ 1
2 =

[
At − 1

LA
∇Aℓ(A

t,Bt)
]
+

[Projected gradient update to A]

6 Bt+ 1
2 =

[
Bt − 1

LB
∇Bℓ(At+ 1

2 ,Bt)
]
+

[Projected gradient update to B]

7 C[r, r] = 1
J

∑
jkB

t+ 1
2 [r, j, k] ∀r ∈ [R] [Update diagonal renormalization matrix]

8 At+1 = At+ 1
2C

9 Bt+1 = (Ct+1)−1Bt+ 1
2 [Renormalize into the set ∆̃B; see Eq. (6.1)]

10 Output: At, Bt

6.1 Constraint relaxation

To improve the computational efficiency of the decomposition step, we modified the constrained
Tucker-1 decomposition method described by Algorithm 1. Instead of cyclically applying gradient
steps followed by projections onto the probability simplices described by the constraints in Eq. (4.8),
we use a dynamic strategy that includes nonnegative projections coupled with a renormalization
process. This method is described below and summarized in Algorithm 2.

Each iteration of the algorithm begins with gradient update steps followed by projections of the
variables into the nonnegative orthant. Immediately after, a renormalization step adjusts A and B

to satisfy relaxed constraint conditions. Specifically, the renormalization ensures that B satisfies the
constraint set

∆̃B =
{
B ∈ RR×J×K

+

∣∣∣∑j∈[J]

∑
k∈[K] B[r, j, k] = J ∀r ∈ [R]

}
, (6.1)

which relaxes the original constraint set ∆B in Eq. (4.8b). This constraint is enforced by rescaling
the tensor B, rather than by a Euclidean projection onto the constraint. Subsequently, these weights
are moved to the matrix A, which ensures that the objective value ℓ(A,B) does not increase after
renormalization. This is not necessarily the case when using the simplex projection in Algorithm 1,
where projection onto the simplex-like sets in Eqs. (4.8a) and (4.8b) could increase the objective.

6.2 KDE bandwidth selection

To calculate the bandwidth hj , we separately calculate a bandwidth hij for the data {gn
i [j]}Nn=1, and

take hj to be the median over {hij}Ii=I . We calculate hij according to Silverman’s rule of thumb
[43] on the trimmed data. We use 2.5% trimming (inner 95 percentile) to minimize the chance that
the bandwidth is made arbitrarily large from a few outliers. The bandwidth calculation is given
by Algorithm 3. Other bandwidth selection methods, such as cross-validation [57] or the improved
Sheather-Jones method [21], could be used instead of Silverman’s rule of thumb. We have not
detected significant differences in the learned mixing coefficient matrix A, the estimated rank R, and
the grain source identification when using these alternative methods, although the learned densities
B are more or less smoothed.

6.3 Implementation of KDE discretization

Our method for turning each continuous probability density function fij(x) into K samples fij(xik),
k ∈ [K] has three steps:

1. Fix the number of samples K from each KDE fij . For the experiments in Sec. 6, we set K = 64.
Numerical testing with different numbers of samples (K = 16, 32, 64, 128, 256) show that the
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Algorithm 3: Bandwidth selection

1 Input: Data gn
i ∈ RJ , inner percentile filter p ∈ (0, 100]

2 for j ∈ [J ] do
3 for i ∈ [I] do
4 Collect gn

i [j] for n = 1, . . . , N
5 Keep only gn

i [j] within the middle p percentile

6 Compute hij = 0.9min(σ̂, IQR
1.34 ) [Silverman’s rule of thumb]

7 hj = median{hij}Ii=I [average the bandwiths across all sinks i]

results are robust to the value of K. Powers of 2 are preferred because the kernel density
procedure we use for our implementation is based on a fast Fourier transform.

2. Choose the domain over which we sample the KDE for each feature j ∈ [J ]: for each j, the left
end point is the smallest sample across all sinks mini,n g

n
i [j], and the right end point is the

largest maxi,n g
n
i [j]. Because the shifted kernel κ is nonzero slightly to the left and right of the

grain samples, we move the left endpoint an additional 3 bandwidths, −3hj , and the right end,
+3hj to capture most of the density of our density estimate fij .

In summary, for each feature j ∈ [J ], uniformly sample the domain[
min

i∈[I],n∈[Nj ]
gn
i [j]− 3hj , max

i∈[I],n∈[Nj ]
gn
i [j] + 3hj

]
to obtain K samples xj1, . . . , xjK .

3. Finally, sample all continuous KDEs fij , i ∈ [I], j ∈ [J ] to obtain samples fij(xik), k ∈ [K].

6.4 Grain label confidence score

We calculate a confidence score for the grain labels using the probabilities estimated according Sec. 5.
We define the score to be

confidence score = min

(
1, log10

(
p(1)

max(p(2), ϵ(p(1)))

))
(6.2)

where p(1) = pr̂ and p(2) are the top two probabilities estimated, and ϵ(p(1)) (machine epsilon at p(1))
is compared against p(2) to avoid division by zero. We interpret a score of 1 to indicate it is at least
10 times as likely the grain came from source r = r̂ than any other source, and a score near 0 to
indicate there is a similar probability the grain came from a difference source.

6.5 Evaluation Metrics

Many evaluation quantities are used in practice to assess closeness of data [28]. We primarily use the
L2 error, mean absolute error (MAE), and a version of mean relative error (MRE) suitable for our
problem.

To evaluate the quality of the factors A and B, we permute the R learned proportions Â[:, r]

and source densities B̂[r, :, :], r ∈ [R], by greedily minimizing the L2 error between the learned
proportions Â[:, r] and true proportions A[:, r]. This allows a fair and consistent comparison between
the algorithm output and the ground truth because the metrics used are mainly computed entrywise.

L2 error When permuting the R learned sources, we need to compare the closeness of these sources
r̂ ∈ [R] to the ground truth sources r ∈ [R]. To do this, we use the L2 error defined by

L2 error :=
∥∥∥Â[:, r̂]−A[:, r]

∥∥∥
2
.
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Mean absolute error We calculate the mean absolute error to evaluate the closeness of two I ×R
matrices M and M̂ by

MAE :=
1

IR

∑
i∈[I]

∑
r∈[R]

∣∣∣M [i, r]− M̂ [i, r]
∣∣∣ .

Mean relative error We calculate the mean relative error (MRE) of the 3-fibres between two

arbitrary I × J ×K tensors T and T̂ by

MRE :=
1

IJ

∑
i∈[I]

∑
j∈[J]

∥∥∥T[i, j, :]− T̂[i, j, :]
∥∥∥
2

∥T[i, j, :]∥2
.

7 Empirical evaluation

We describe the setup and methodology of a numerical experiment conducted using a dataset collected
by Sundell et al. [51]. The dataset consists of sediment samples (sinks) collected from various locations
in a basin. Each sample was analyzed to identify seven distinct features, including the age of zircon
grains and several geochemical markers. The objectives of this experiment are to identify the number
of latent sources contributing to these samples, determine the proportion of each source within
the samples, learn the distributions of these sources, accurately label each grain by its source, and
validate these findings against established ground truths.

7.1 Experimental setup

The dataset from Sundell et al. was originally used to reconstruct continental crustal thicknesses
over time in the central Andes. It includes U-Pb ages and concentrations of 23 trace and rare-earth
elements: P, Sc, Ti, Y, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Th,
and U. Three artificial source (R = 3) were constructed by randomly drawing 75, 140, and 399 grains,
without replacement, from the original dataset of 710 grains. For each source, seven key variables
were selected for analysis: age, Eu anomaly, Ti-based crystallization temperature, Th-U ratio, sum
of light rare-earth elements over heavy rare-earth elements (ΣLREE/ΣHREE), Dy-Yb ratio, and
normalized (Ce/ND)/Y ratio. These variables were chosen based on their variability, as explored by
Sundell et al. [51]. This variability is crucial because if all sources are identical, their mixtures will
also be identical, providing no basis for the Tucker-1 method to discriminate. Ultimately, the choice
of variables was guided by the need for distinct and informative features.

From these defined sources, I = 20 sinks were created by randomly selecting N1 = N2 = N3 = 75
grains, without replacement, for each sink, ensuring each sink proportionally represents the R = 3
sources. This procedure resulted in a ground truth proportion matrix with entries A♮[i, r] indicating
the fraction of grains in each sink i originating from source r, normalized such that the sum of
proportions for each sink sums to one, i.e.,

∑
r∈[R] A

♮[i, r] = 1.
The raw data is converted into the empirical density tensor Y following the procedure of Sec. 1.2,

and subsequently factorized using Algorithm 2 with ranks ranging from R = 1 to R = 20 (up to
the number of sinks I). The factorization process was terminated when the norm of the projected
gradient (a standard measure of optimality) reached the tolerance 10−5.

7.2 Results

The experimental outcomes were promising, demonstrating a mean relative error (MRE) of 11.2%

between the empirical distribution tensor Y and the decomposed tensor Ŷ = ÂB̂, with an optimal
rank correctly estimated as R = 3. This MRE suggests that the decomposition model can explain
approximately 88.8% of the data. The fitting of the learned proportion matrix Â to the ground truth
A♮ revealed a mean absolute error (MAE) of 4.8%. Additionally, comparing the learned density

tensor B̂ to the hypothetical ground-truth density tensor B♮ yielded an MRE of 9.0%.
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Figure 7.1: The final objective loss versus rank. Each line in the left panel varies the bandwidth
relative to that obtained by Silverman’s rule, and varies the fraction of grains used, e.g., (0.5, 0.66)
indicates the results obtained by halving Silverman’s bandwidth and using 66% of the overall available
grains. The right panel shows results for varying number of sinks I.

These findings are elaborated in Sec. 7.2.2 and Sec. 7.2.3. See Sec. 6.5 for details on the error
metrics used. Grain labeling results, detailed in Sec. 7.2.4, demonstrated an accuracy of 88.5% across
all sinks, affirming the effectiveness of the labeling approach based on the learned source densities.

7.2.1 Rank estimation

The optimal rank for this dataset was estimated using the procedure outlined in Sec. 4.5. This
method can be seen as a refinement of the approach by Saylor et al. [36], which selects the rank based
on segmented linear regression. We only check up to a maximum rank of 7 in our main experiment,
rather than the theoretical maximum I = 20 to avoid the computational expense of decompositions
for large ranks. We find the estimated rank is robust to selecting different maximum ranks, allowing
for computational savings by restricting the search to smaller, more likely optimal ranks. Additionally,
as shown in Fig. 7.1, the rank estimation is robust to variations in several parameters, including the
KDE bandwidths hj , the number of grain samples in each sink N , the number of sinks I. This can
be seen by observing a noticeable “elbow“ or “knee” at rank R = 3 in all tests. Additional tests
show rank is also robust to the number of features used J , and number of discretization points K.

Figure 7.2 shows the error as a function of rank in our main experiment, with the standard
curvature of the loss function plotted on the right. The optimal rank is the argument that maximizes
the curvature, which in this case is R = 3. The error plot in Fig. 7.2 (left) exhibits a significant
reduction in loss from ranks 1 to 3, after which the improvements plateau, indicating diminishing
returns with higher ranks. This observation is corroborated by the standardized curvature plot in
Fig. 7.2 (right), which displays a clear maximum at R = 3. This point marks where the increase in
rank no longer justifies the marginal improvement in fitting error.

7.2.2 Proportion matrix accuracy

The comparison between the true and learned proportion matrices A and Â is shown in Fig. 7.3.
The MAE of 4.8% reflects a modest deviation, averaging 5%, between the estimated and actual
source proportions.

7.2.3 Source feature density tensor accuracy

In our experimental framework, the source of each grain is known, but the actual densities of these
tensor sources are not directly available. Therefore, to make a meaningful comparison between the
learned density tensor B̂ and a hypothetical true density tensor B♮, we estimate the true densities
using a KDE approach similar to Sections 3.1 and 3.2, leveraging the known labels of each grain.
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Figure 7.2: (Left) The final objective loss (cf. Eq. (4.7)) obtained by Algorithm 2 for the experiment
described in Sec. 7. (Right) standard curvature of the loss curve, indicating a “knee” at rank R = 3,
which represents the optimal balance between low rank (simpler model) and low error (expressive
model). This rank was identified by the maximum standard curvature, as shown on the right;
see Eq. (4.9).

Figure 7.3: (Left) Learned proportions Â, (middle) ground truth A, and (right) learned entries of
Â plotted against true entries of A from the experiment in Sec. 7. The vertical bars represent the
absolute error between entries, and the shaded region shows a deviation of ±4.8 percentage points
from equality. The points deviate on average 4.8% from equality, which is the same amount as the
MAE between the learned and true proportions.

This approach constructs B♮ as our best representation of the source distributions from which the
grains are assumed to originate.

It is important that the bandwidth hj and the sample points xj1, . . . , xjK used for the KDE
of the true densities match those used to create the input tensor Y. This consistency ensures that
any comparison between B♮ and B̂ is based solely on the differences in density estimation, without
confounding discrepancies in the KDE parameters.

The MRE between B̂ and B♮ is 9.0%, indicating an average relative deviation of 9% in the learned
distributions from those estimated as true. This quantity underscores the accuracy of the learned
densities in approximating the true source distributions. We note that our algorithm is successful
even though these sources are relatively similar to each other, which points to the stability of the
approach.

7.2.4 Grain labels

In our methodology, grains are labeled according to their most probable source based on the learned
densities (cf. Sec. 5). Ideal labeling would result in distinct clusters of grains assigned to their
respective sources without error. Figure 7.5 demonstrates the labeling performance in the first sink,
where the grains are organized by their source of origin and colour-coded based on the confidence
of their labeling, as described in Sec. 6.4. High-confidence grains are generally labeled correctly,
whereas grains with lower confidence scores are more prone to mislabeling, though some are correctly
identified by chance rather than accurate modeling.
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Figure 7.4: For sources r = 1 (top row), r = 2 (middle row), and r = 3 (bottom row), we display

(left column) learned source densities B̂[r, :, :], (middle column) true source densities B♮[r, :, :], and

(right column) a comparison of learned entries of B̂ against hypothetical true entries of B♮ for the
experiment in Sec. 7. The plots show a close match, with most points lying near the diagonal line,
indicating that the learned densities closely mirror the true densities.

The overall labeling accuracy across all grains from every sink is 1327/1500 = 88.5%. This high
success rate suggests that the model effectively captures and applies the distinguishing features of
each source.

To further validate the model’s labeling, we compare the proportions of labeled grains in each
sink to the expected proportions derived from the true source proportions given by A. Specifically,
we count grains labeled as belonging to source r in each sink i, normalize these counts by the total
grains in sink i, and compare to the corresponding entry A[i, r]. This comparison is visualized in
Fig. 7.6, where we find an MAE of 4.1% between the learned and true proportions, indicating close
alignment. Because in practice the true source proportions A are not available, we also compare the
grain labels to the learned proportions Â, resulting in an MAE of 6.8%.

7.2.5 Independence and multiple features

As highlighted in the introduction, current approaches are limited to data with only two features.
Rather than characterizing sources and sinks via the multidimensional joint distributions, we choose
to model the product distribution by constructing an array of J 1-dimensional feature distributions,
allowing us to contain the data in a 3rd order tensor. We make this choice because multidimensional
joint discretized KDEs would require a tensor of order J + 1, which could lead to intractable
computation when using many features. If the features were independent, the product distribution
would be equivalent to the joint distribution, but this may not be the case for an arbitrary set of
features. Nonetheless, two experiments described below are meant to validate the use of a product
distribution in place of a J-dimensional joint distribution.

In the first experiment, we consider only two features (Eu anomaly and Ti-based crystallization
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Figure 7.5: (Left) Estimated grain labels for sink i = 1 using the model densities from Sec. 7.
(Right) Labels for the same grains using the true densities; see Sec. 7.2.3. Labeling accuracy for
this sink was 67/75 = 89.3% using model densities and 68/75 = 90.6% using true densities. Grains
are sorted by their original source for clearer visualization, with markers colored according to their
confidence scores as defined in Sec. 6.4.

Figure 7.6: (Left) Comparison between the proportion of learned grain labels in each sink with the

learned proportion matrix Â from Sec. 7. (Right) Comparison between the proportion of learned
grain labels and the ground truth proportions A. We observe an MAE between the corresponding
matrices of 6.8% and 4.1% respectively. See Sec. 7.2.4 for more details.

temperature) using our method with 1-dimensional feature KDEs. Our methodology achieved a
labeling accuracy of 76.1%, which is marginally lower than 79.5% accuracy obtained by labeling
based on known source distributions. This result underscores that incorporating a greater number of
features enhances labeling accuracy, as detailed in Sec. 7.2.4.

The second experiment explores the trade-off between estimating joint distributions of two features
and against using more features under the assumption of independence. Here, the joint distributions
are modeled with 2-dimensional KDEs. The optimal scenario, using known joint-feature densities,
achieved a labeling accuracy of 79.5%, which happens to coincide with the first experiment’s results.
A variant of our model that estimates joint-feature distributions achieved an accuracy of 80.4%,
which is close to the theoretical optimum, yet still less than the accuracy attained when all seven
features are considered.

8 Concluding remarks

Detrital provenance research continues to expand the variety of features that can be extracted
from individual detrital grains. However, the ability to collect this data has surpassed the scientific
community’s ability to interpret and model it quantitatively. This study introduces a novel approach
to multivariate sediment source identification using the Tucker-1 decomposition applied to various
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sediment samples.
We have demonstrated that the Tucker-1 decomposition method can effectively recover both the

source feature distributions and the proportion of each source in the sink samples. The success of
this method hinges on precise rank estimation, for which we have introduced and validated a novel
technique based on maximizing the curvature of the residual function. Additionally, we have shown
that individual zircon grains can be confidently attributed to specific latent sediment sources with
approximately 90% accuracy by maximizing the likelihood of their feature distribution given the
estimated latent source distributions. All methodologies discussed are available as fully reproducible
open-source software.

There are several potential improvements and adaptations for Algorithm 2 that could enhance its
applicability.

Sampling efficiency Instead of uniform sampling for the KDE, as described in Sec. 6.3, sampling
could be weighted by the density values or gradients. This targeted importance sampling might yield
a more efficient distribution of samples xij , ensuring that areas with higher information density are
sampled more intensively.

Model extensions for complex distributions If the features are not independent, then their
joint distribution is not fully captured by the product of the 1-dimensional distributions. In this case,
some insight on the interaction between features may be lost. One could extend our method to one
that fully captures the joint distributions by expanding the decomposition model from a third order
tensor model to a higher-order tensor model, where both Y and B would be tensors of order (J + 1),
rather than order 3. In this extension, the first-order slices Y[i, :, . . . , :] (i ∈ [I]) and B[r, :, . . . , :]
(r ∈ [R]) represent the normalized densities for sink i and source r, respectively. This would involve
a more complex multiplication scheme between A and B, extending across multiple dimensions:

Y[i0, i1, . . . , iJ ] = (AB)[i0, i1, . . . , iJ ] =
∑
r∈[R]

A[i0, r] ·B[r, i1, . . . , iJ ]. (8.1)

Alternative metrics The fitting of the empirical density tensor Y to the model AB could be
performed using alternative metrics such as the 1-norm, Kullbach-Leibler divergence, or Wasserstein
distance, instead of the sum-of-least-squares error currently used. These metrics may provide models
that are better suited to the nature of the data and the specific research questions at hand.

We also note that alternate distribution representations could be used to perform the decomposition
of sinks into sources. One example is the empirical cumulative distribution function. This approach
would eliminate the need to use kernel density estimation to determine the number of sources and the
mixture coefficients. However, some form of smoothing would still be required to turn the estimated
cumulative distributions into probability density functions in order to perform grain labeling.

These refinements and extensions may enhance the model’s utility and accuracy in complex
multivariate sediment source identification problems.
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Symbol Description
[I] set of integers from 1 to I, {1, 2, . . . , I}

I, J,K,R,Ni dimensions of vectors, matrices, and tensors
i, j, k, r, n indexes that run from 1 to their corresponding dimension

R+ set of nonnegative real scalars

RI×R
+ set of nonnegative matrices with I rows and R columns

RR×J×K
+ set of nonnegative R× J ×K 3-way tensors

I number of sinks (collections of grains)
J number of features/types of measurements
K number of samples from the estimated continuous distributions
R number of latent sources
Ni number of grains collected and analysed from the ith sink

gn
i ∈ RJ where n ∈ [Ni] nth grain in sink i, a vector of measured features

A, M matrices
Y, T tensor / three (or higher) dimensional array
gn
i [j] the jth entry of the vector gn

i

A[i, r] entry in the ith row & rth column of the matrix A
B[r, j, k] entry in the rth row, jth column, & kth frontal slice of the tensor B

A[:, r] the rth column of the matrix A
B[r, j, :] the 3-fibre in the rth row and jth column of the tensor B

AB := B×1 A 1-mode product/multiplication of a matrix and tensor
Si probability distribution of the ith sink
Br probability distribution of the rth source
βrj probability distribution of the jth feature in the rth source

αir ∈ R+ scalar proportion of source r present in sink i
hj ∈ R++ kernel density estimate bandwidth for the jth feature

fij : R → R+ kernel density estimate for the jth feature of sink i
xjk ∈ R kth domain sample/input for densities of feature j

∆xj ∈ R++ uniform step size between domain samples for densities of feature j
∥v∥2, ∥M∥F , ∥T∥F entrywise norm: root of sum-of-squared entries

Table 1: Summary of symbols, notation, and definitions used throughout the paper.
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