BlockTensorDecomposition.jl

Optimization Framework for Constrained Tensor Factorization
30 Jul 2025 | SIAM/CAIMS AN25 | Montréal, QC

Nicholas Richardson' Michael P. Friedlander!?

'Department of Mathematics *Department of Computer Science

Cc
w0
(@)

THE UNIVERSITY SIAM | The Third Joint SIAM/CAIMS MIONFSATIJ’;IEJIE[E)
OF BRITISH COLUMBIA 2@25 Annual Meetings PN griyeliol

University of British Columbia

An Optimization Framework for Constrained Tensor Factorization

Overview

e half new developments in tensor factorization / half
advertisement

e propose a signal demixing framework and implementation in
Julia using constrained tensor factorization

e use this tool to separate real signal mixtures in applications
like geology, biology, and music

e casily extendable to a broader class of tensor decompositions

An Optimization Framework for Constrained Tensor Factorization

Setting: Multiple Unlabeled Mixtures

Unmix {y, } into a small number of unknown sources {b, } with
unknown weights {a;, }:

y; = a11b1 + ai2bs + -+ a1rbr

y; = anbi + arbs + --- + arrbr.

An Optimization Framework for Constrained Tensor Factorization

Setting: Multiple Unlabeled Mixtures

y; = ai1bi -

- a12b2 A

Y — aribi

- araba -

- a1rbr

- arpbr

e Mixtures can be multivariable functions y, : RY — R

e or directly measured vectors/matrices/tensors y;|j1, - . . , jN]

Either way, package data into a tensor Y by sampling the

mixtures {y, } or stacking the observations:

Y[iajlv R 7jN] — Yi(xl[le <o

, N iN]) = yilj1, - -5 In]-

An Optimization Framework for Constrained Tensor Factorization

Model: Tucker-1 Tensor Factorization

e Factorize Y into a mixing matrix A times a source tensor B
using the Tucker-1 model [1]

e Y = B x; A with the entry-wise equation
. . R . . .
° Y[Zajh <. 7.]N] — Z’r’:l A[Z,T]) B[rajla I 7.7N]

Figure 1: Example Tucker-1 decomposition for a 3rd-order tensor.

An Optimization Framework for Constrained Tensor Factorization

Application: Sediment Analysis

J observed features

A
| 1

| K sampled values
(entries sum to 1)

I sinks =

Density

Age Eu Anomaly Ti Temperature

L J
!

area sums to 1

Figure 2: Input data tensor Y. Each depth fibre Y3, j, :| is a discretized probability density
for a different geological feature. Decomposed source distributions can be used to classify
grains. See our paper Tracing Sedimentary Origins in Multivariate Geochronology via
Constrained Tensor Factorization [2].

An Optimization Framework for Constrained Tensor Factorization

Application: Spatial Transcriptomics

x-location—
x-location—

cell types — 4

«— Souo3

«— Souo3 5

|
«— sadA3 100

Figure 3: Spatial transcriptomics factorization model. Spatial distribution of many genes can
be decomposed into few cell types. We uncover the gene expression and spatial distribution
of these cell types, and can label distinct regions accordingly.

An Optimization Framework for Constrained Tensor Factorization

Application: Musical Instrument
Separation

frequency — note — frequency —

«— JuIn
«— aun

«— J10U

Figure 4: Audio source separation model. The short-time Fourier transform of a mixture can
be separated into harmonically distinct notes. These can be grouped by their spectral
similarity to recover instrument sources.

An Optimization Framework for Constrained Tensor Factorization

BlockTensorDecomposition.jl

Least-Squares Optimization

Minimize the error between the model B x1 A and the data Y':

1
min (4, B) := _[|B x1 A - Y|5 st AcCy, BeCs.

Basic use:

A = abs.(randn(5, 3))
B = abs.(randn(3, 6, 7))
Y =B x1 A

options = (rank=3, model=Tuckerl, objective=L2(), constraints=nonnegative!)
decomposition, stats, kwargs = factorize(Y; options...)
(B_out, A out) = factors(decomposition)

An Optimization Framework for Constrained Tensor Factorization

Algorithm

Block Projected Gradient Descent
Cyclically update factors with descent updates [3]:

1
Ly

A" =P, | A V 44(At, BY)

julia> kwargs[:update]

BlockedUpdate(
MomentumUpdate(@, lipschitz, combine)
GradientDescent(©, gradient, LipschitzStep)
Projection(@, Entrywise(RelLU, isnonnegative))
MomentumUpdate(1l, lipschitz, combine)
GradientDescent(1l, gradient, LipschitzStep)
Projection(1l, Entrywise(RelLU, isnonnegative))

An Optimization Framework for Constrained Tensor Factorization

10

Guarantees

Converges to a block-wise minimum and stationary point:

(A", B*) < ' ((A*,B),l(A,B")}.
(4',B") < min {4, B),¢(4,B"))

Set tolerance=0.01 to ensure RelativeError is less that 1 %.

julia> display(stats_data)

Row | Iteration ObjectiveValue GradientNNCone RelativeError
Int64 Float64 Float64 Float64

1 0 0.618283 1.78212 0.505625

2 1 0.25426 1.23183 0.324246

3 2 0.104661 0.605968 0.20803
45 44 0.000297298 0.00446732 0.0110874
46 45 0.000250057 0.00410569 0.0101684
47 46 0.000210449 0.003773 0.00932844

An Optimization Framework for Constrained Tensor Factorization

The Bells and Whistles

An Optimization Framework for Constrained Tensor Factorization

12

Multi-Scaled Decomposition

Use continuous dims to optimize over multiple scales for faster
convergence.

julia> @time decomposition, stats data, kwargs = factorize(Y; options...);
11.828295 seconds (214.97 k allocations: 15.197 GiB, 32.42% gc time)

julia> @time decomposition, stats data, kwargs = multiscale factorize(Y;
continuous_dims=[2, 3, 4], options...);
2.335374 seconds (201.33 k allocations: 2.905 GiB, 25.26% gc time)

x,[1] 52| z,(3]

3 B L | =
. x<3)[1] x(3)[2] x(g)[?)]T %
-% zo[1] 2] 3] ,[4] a,[5] g
22 @ L] @ L @ 3
l :c<2)[1] x(Z)[Q] 8 Lg‘i

ol w2l =B x4 5] 6] @7 oz z9] ! *QE

1 @ | ® | ® | ® | o
(1]) [2] 1) 13] 1) [4]
domain ¢

Figure 5: Rather than discretizing the mixtures {y, } on a fine grid from the start, optimize
over a cheaper, coarse discretization with fewer points and gradually refine.

An Optimization Framework for Constrained Tensor Factorization

13

Rescaling trick

If you have simplex constraints

e Ac Ay ={AcRUEIE Al] =1, vz'}

e Be Ap = fAc REXJXK‘Zle Bir,j, k| =1, Vr,j}
Updates look like: 5

e« A" =P, (A" - iVAE(At,Bt)) — 4

» B' = P,,(B' — [~ VB{(A", B)) -

An Optimization Framework for Constrained Tensor Factorization

14

Rescaling trick

e Relax simplex constraintsto A > 0, B > 0
o and < > Bpjr, = 1forall 7 (vs 3, By = 1forallr, j)

Updates now look like:
At—|—1/2 (At . ZVAK(A—t Bt))
s RitY/2 _ mpt 1 t+1/2 ot
B = (B 7 L v BL(A ,B"))+
o Bt-l—l _ C—lBt—|—1/2 and At—l—l _ At—|—1/2C

1

An Optimization Framework for Constrained Tensor Factorization

Rescaling vs simplex projection

o Compare stationary condition: dist (0, 0(£ + d>0)(A,B)) at
every iteration for different constraint methods

10

objective

105

1 1 1 1
0 2500 5000 7500 10000
iteration

An Optimization Framework for Constrained Tensor Factorization

Many more...

e Momentum and second-order acceleration like Block-lipschitz
constants (Hessian approximations)

e Rank detection

e Other factorizations like full Tucker, CP-Decomposition,
custom

e Other constraints like p-norms, interval, linear, custom
e Other block update order: fully random, partial random

e Coming soon: Other objectives like 1-norm, entropy, KL-
divergence

An Optimization Framework for Constrained Tensor Factorization

17

References

[1] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,” SIAM Rev.,
vol. 51, no. 3, pp. 455-500, Aug. 2009, do1: 10.1137/07070111X.

[2] N. Graham, N. Richardson, M. P. Friedlander, and J. Saylor, “Tracing Sedimentary
Origins in Multivariate Geochronology via Constrained Tensor Factorization,”
Mathematical Geosciences, Feb. 2025, do1: 10.1007/s11004-024-10175-0.

[3] Y. Xu and W. Yin, “A Block Coordinate Descent Method for Regularized
Multiconvex Optimization with Applications to Nonnegative Tensor Factorization
and Completion,” SIAM J. Imaging Sci., vol. 6, no. 3, pp. 1758—-1789, Jan. 2013, do1:
10.1137/120887795.

[4] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a "Kneedle" in a
Haystack: Detecting Knee Points in System Behavior,” in 2011 3 1st International
Conference on Distributed Computing Systems Workshops, Jun. 2011, pp. 166—171.
doi: 10.1109/ICDCSW.2011.20.

e
! -
TR L oL

https://github.com/MPF-Optimization-Laboratory/Matrix TensorFactor.jl

An Optimization Framework for Constrained Tensor Factorization 18

Estimating Rank

e Usually we need to know R in advance

e For 1-parameter factorizations like Tucker-1 and CP-
Decomposition...

o Let f(r) = || X} — Y| »/||Y]| 5 be final relative error with a
rank r factorization

e Pick the r at the maximum curvature [4]

R — arg Mmax RK¢\r) .— f”(r)
o) (L (p

An Optimization Framework for Constrained Tensor Factorization

19

Block-Lipschitz Constant

1
Cl,fz—i_rl . PCn,r (afl,’r’ L%r V.fﬁa”’ (a’%>r)) !

where
fhola) =SB AT, AT, AL (a), AL AR -
and

0 ot 1 T

A%,'r (a) — af”:ll af;;*l—l a aflﬂ“ﬂLl ag’R”
! Lol v

An Optimization Framework for Constrained Tensor Factorization

Block-Lipschitz Constant

AL P, (44— VAL,

where
fr(a) = %H[Ba A?rlv x '7Afzt117A%’Afl+1’ '
and
VR I
n =\ A1 " App1 OGnr Qg
| [

An Optimization Framework for Constrained Tensor Factorization

AN Y[

21

Momentum

Before a gradient step, we move A further in the direction of
travel

AL AL 4 Wb (AL — ALY
— Al (ian + w%) — Afz_lw%

where the amount of momentum 1s determined by

=
Wi, <— min (d)t,(? L,Z (Ln)l) .

An Optimization Framework for Constrained Tensor Factorization

22

Examples of Constraints

struct GenericConstraint <: AbstractConstraint
apply: :Function
input a AbstractArray -> mutate it so that “check™ would return true
check: :Function

end

function (C::GenericConstraint)(D: :AbstractArray)

(C.apply) (D)
end

check(C: :GenericConstraint, A::AbstractArray) = (C.check)(A)

12scale 1slices! = ScaledNormalization(l2norm;
whats normalized=(x -> eachslice(x; dims=1)))

llnormalize rows! = ProjectedNormalization(llnorm, llproject!;
whats _normalized=eachrow)

nonnegative! = Entrywise(RelLU, isnonnegative)

IntervalConstraint(a, b) = Entrywise(x -> clamp(x, a, b), x -> a <= X <= b)

An Optimization Framework for Constrained Tensor Factorization

23

Randomizing the order of updates

BlockedUpdate(
MomentumUpdate(@, lipschitz, combine)
GradientDescent(@, gradient, LipschitzStep)
Projection(@, Entrywise(RelLU, isnonnegative))
MomentumUpdate(1l, lipschitz, combine)
GradientDescent(1l, gradient, LipschitzStep)
Projection(l, Entrywise(ReLU, isnonnegative))

)

Include the boolean options;

e group_by factor: Groups updates on the same factor together
e random_order: Updates in a new random order each iteration

e recursive_random order: Inner grouped updates performed
in a random order (recursively)

An Optimization Framework for Constrained Tensor Factorization o4

