
BlockTensorDecomposition.jl
Optimization Framework for Constrained Tensor Factorization

30 Jul 2025 | SIAM/CAIMS AN25 | Montréal, QC

Nicholas Richardson¹
¹Department of Mathematics

Michael P. Friedlander¹²
²Department of Computer Science

1An Optimization Framework for Constrained Tensor Factorization

Overview
half new developments in tensor factorization / half
advertisement

propose a signal demixing framework and implementation in
Julia using constrained tensor factorization

use this tool to separate real signal mixtures in applications
like geology, biology, and music

easily extendable to a broader class of tensor decompositions

2An Optimization Framework for Constrained Tensor Factorization

Setting: Multiple Unlabeled Mixtures
Unmix into a small number of unknown sources with
unknown weights :

{ }yi { }br

{ }air

y1

yI

= + + ⋯ +a11b1 a12b2 a1RbR

⋮
= + + ⋯ + .aI1b1 aI2b2 aIRbR

3An Optimization Framework for Constrained Tensor Factorization

Setting: Multiple Unlabeled Mixtures

Mixtures can be multivariable functions

or directly measured vectors/matrices/tensors

Either way, package data into a tensor by sampling the
mixtures or stacking the observations:

y1

yI

= + + ⋯ +a11b1 a12b2 a1RbR

= + + ⋯ +aI1b1 aI2b2 aIRbR

: → Ryi R
N

[, … ,]yi j1 jN

Y

{ }yi

Y [i, , … ,]j1 jN = ([], … , []) = [, … ,].yi x1 j1 xN jN yi j1 jN

4An Optimization Framework for Constrained Tensor Factorization

Model: Tucker-1 Tensor Factorization
Factorize into a mixing matrix times a source tensor
using the Tucker-1 model []

 with the entry-wise equation

Figure 1: Example Tucker-1 decomposition for a rd-order tensor.

Y A B

1

Y = B A×1

Y [i, , … ,] = A[i, r] ⋅ B[r, , … ,]j1 jN ∑R
r=1 j1 jN

3

5An Optimization Framework for Constrained Tensor Factorization

Application: Sediment Analysis

Figure 2: Input data tensor . Each depth fibre is a discretized probability density
for a different geological feature. Decomposed source distributions can be used to classify

grains. See our paper Tracing Sedimentary Origins in Multivariate Geochronology via
Constrained Tensor Factorization [].

Y Y [i, j, :]

2
6An Optimization Framework for Constrained Tensor Factorization

Application: Spatial Transcriptomics

Figure 3: Spatial transcriptomics factorization model. Spatial distribution of many genes can
be decomposed into few cell types. We uncover the gene expression and spatial distribution

of these cell types, and can label distinct regions accordingly.

7An Optimization Framework for Constrained Tensor Factorization

Application: Musical Instrument
Separation

Figure 4: Audio source separation model. The short-time Fourier transform of a mixture can
be separated into harmonically distinct notes. These can be grouped by their spectral

similarity to recover instrument sources.

8An Optimization Framework for Constrained Tensor Factorization

BlockTensorDecomposition.jl
Least-Squares Optimization
Minimize the error between the model and the data :

Basic use:

B A×1 Y

ℓ(A, B) := s.t A ∈ , B ∈ .min
A,B

1
2

∥B A − Y ∥×1
2
F CA CB

A = abs.(randn(5, 3))1
B = abs.(randn(3, 6, 7))2
Y = B ×₁ A3

4
options = (rank=3, model=Tucker1, objective=L2(), constraints=nonnegative!)5
decomposition, stats, kwargs = factorize(Y; options...)6
(B_out, A_out) = factors(decomposition)7

9An Optimization Framework for Constrained Tensor Factorization

Algorithm
Block Projected Gradient Descent
Cyclically update factors with descent updates []:3

At+1 = (− ℓ(,)) .PCA
At 1

LA

∇A At Bt

julia> kwargs[:update]1
BlockedUpdate(2
 MomentumUpdate(0, lipschitz, combine)3
 GradientDescent(0, gradient, LipschitzStep)4
 Projection(0, Entrywise(ReLU, isnonnegative))5
 MomentumUpdate(1, lipschitz, combine)6
 GradientDescent(1, gradient, LipschitzStep)7
 Projection(1, Entrywise(ReLU, isnonnegative))8
)9

10An Optimization Framework for Constrained Tensor Factorization

Guarantees
Converges to a block-wise minimum and stationary point:

Set tolerance=0.01 to ensure RelativeError is less that .

ℓ(,) ≤ {ℓ(, B), ℓ(A,)} .A∗ B∗ min
A∈ ,B∈CA CB

A∗ B∗

1 %
julia> display(stats_data)1
 Row │ Iteration ObjectiveValue GradientNNCone RelativeError2
 │ Int64 Float64 Float64 Float643
─────┼──4
 1 │ 0 0.618283 1.78212 0.5056255
 2 │ 1 0.25426 1.23183 0.3242466
 3 │ 2 0.104661 0.605968 0.208037
 ⋮ │ ⋮ ⋮ ⋮ ⋮8
 45 │ 44 0.000297298 0.00446732 0.01108749
 46 │ 45 0.000250057 0.00410569 0.010168410
 47 │ 46 0.000210449 0.003773 0.0093284411

11An Optimization Framework for Constrained Tensor Factorization

The Bells and Whistles

12An Optimization Framework for Constrained Tensor Factorization

Multi-Scaled Decomposition
Use continuous_dims to optimize over multiple scales for faster
convergence.

Figure 5: Rather than discretizing the mixtures on a fine grid from the start, optimize
over a cheaper, coarse discretization with fewer points and gradually refine.

julia> @time decomposition, stats_data, kwargs = factorize(Y; options...);1
11.828295 seconds (214.97 k allocations: 15.197 GiB, 32.42% gc time)2

julia> @time decomposition, stats_data, kwargs = multiscale_factorize(Y;1
 continuous_dims=[2, 3, 4], options...);2
2.335374 seconds (201.33 k allocations: 2.905 GiB, 25.26% gc time)3

{ }yi

13An Optimization Framework for Constrained Tensor Factorization

Rescaling trick
If you have simplex constraints

Updates look like:

A ∈ = {A ∈ A[i, r] = 1, ∀i}ΔA R
I×R
+

∣∣∑
R
r=1

B ∈ = {A ∈ B[r, j, k] = 1, ∀r, j}ΔB R
R×J×K
+

∣∣∑
K
k=1

= (− ℓ(,))At+1 PΔA
At 1

LA
∇A At Bt

= (− ℓ(,))Bt PΔA
Bt 1

LB
∇B At+1 Bt

14An Optimization Framework for Constrained Tensor Factorization

Rescaling trick
Relax simplex constraints to ,

and for all (vs for all)

Updates now look like:

 and

where

A ≥ 0 B ≥ 0

= 11
J
∑jk Brjk r = 1∑k Brjk r, j

= (− ℓ(,)At+1/2 At 1
LA

∇A At Bt)+

= (− ℓ(,)Bt+1/2 Bt 1
LB

∇B At+1/2 Bt)+

=Bt+1 C−1Bt+1/2 = CAt+1 At+1/2

=Crr
1
J
∑jk Brjk

An Optimization Framework for Constrained Tensor Factorization

Rescaling vs simplex projection
Compare stationary condition: at
every iteration for different constraint methods

dist (0, ∂(ℓ +)(A, B))δ≥0

16An Optimization Framework for Constrained Tensor Factorization

Many more…
Momentum and second-order acceleration like Block-lipschitz
constants (Hessian approximations)

Rank detection

Other factorizations like full Tucker, CP-Decomposition,
custom

Other constraints like p-norms, interval, linear, custom

Other block update order: fully random, partial random

Coming soon: Other objectives like 1-norm, entropy, KL-
divergence

17An Optimization Framework for Constrained Tensor Factorization

[1]

[2]

[3]

[4]

References
T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,” SIAM Rev.,
vol. 51, no. 3, pp. 455–500, Aug. 2009, doi: .
N. Graham, N. Richardson, M. P. Friedlander, and J. Saylor, “Tracing Sedimentary
Origins in Multivariate Geochronology via Constrained Tensor Factorization,”
Mathematical Geosciences, Feb. 2025, doi: .
Y. Xu and W. Yin, “A Block Coordinate Descent Method for Regularized
Multiconvex Optimization with Applications to Nonnegative Tensor Factorization
and Completion,” SIAM J. Imaging Sci., vol. 6, no. 3, pp. 1758–1789, Jan. 2013, doi:

.
V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a "Kneedle" in a
Haystack: Detecting Knee Points in System Behavior,” in 2011 31st International
Conference on Distributed Computing Systems Workshops, Jun. 2011, pp. 166–171.
doi: .

Please try out our code! Change branch to latest version to test full suite of features.

10.1137/07070111X

10.1007/s11004-024-10175-0

10.1137/120887795

10.1109/ICDCSW.2011.20

https://github.com/MPF-Optimization-Laboratory/MatrixTensorFactor.jl

18An Optimization Framework for Constrained Tensor Factorization

Estimating Rank
Usually we need to know in advance

For 1-parameter factorizations like Tucker-1 and CP-
Decomposition…

Let be final relative error with a
rank factorization

Pick the at the maximum curvature []

R

f(r) = /∥ − Y ∥X∗
r F ∥Y ∥F

r

r 4

= arg (r) :=R̂ max
r

κf

(r)f ′′

(1 + ((r)f ′)2)3/2

19An Optimization Framework for Constrained Tensor Factorization

Block-Lipschitz Constant

where

and

← (− ∇ ()) ,at+1
n,r PCn,r

at
n,r

1

Lt
n,r

f t
n,r at

n,r

(a) =f t
n,r

1
2

[B; , … , , (a), , … ,] − Y∥∥ At+1
1 At+1

n−1 At
n,r At

n+1 At
N

∥∥
2

F

(a) = .At
n,r

⎡

⎣
⎢

↑

at+1
n,1

↓

⋯

↑

at+1
n,r−1

↓

↑

a

↓

↑

at
n,r+1

↓

⋯

↑

at
n,Rn

↓

⎤

⎦
⎥

An Optimization Framework for Constrained Tensor Factorization

Block-Lipschitz Constant

where

and

← (− ∇ ()() ,At+1
n PCn

At
n f t

n At
n L̂

t

n)−1

(a) =f t
n

1
2

[B; , … , , , , … ,] − Y∥∥ At+1
1 At+1

n−1 At
n At

n+1 At
N

∥∥
2

F

= .Â
t

n

⎡

⎣
⎢

↑
at

n,1

↓

⋯
↑

at
n,r−1

↓

↑
at

n,r

↓

↑
at

n,r+1

↓

⋯
↑

at
n,Rn

↓

⎤

⎦
⎥

21An Optimization Framework for Constrained Tensor Factorization

Momentum
Before a gradient step, we move further in the direction of
travel

where the amount of momentum is determined by

A

←Â
t

n + (−)At
n ωt

n At
n At−1

n

= (+) −At
n idRn

ωt
n At−1

n ωt
n

← min(, δ) .ωt
n ω̂

t (L̂
t−1
n L̂

t

n)−1
− −−−−−−−−

√

22An Optimization Framework for Constrained Tensor Factorization

Examples of Constraints
struct GenericConstraint <: AbstractConstraint1
 apply::Function2
 # input a AbstractArray -> mutate it so that `check` would return true3
 check::Function4
end5

6
function (C::GenericConstraint)(D::AbstractArray)7
 (C.apply)(D)8
end9

10
check(C::GenericConstraint, A::AbstractArray) = (C.check)(A)11

l2scale_1slices! = ScaledNormalization(l2norm;1
 whats_normalized=(x -> eachslice(x; dims=1)))2

3
l1normalize_rows! = ProjectedNormalization(l1norm, l1project!;4
 whats_normalized=eachrow)5

6
nonnegative! = Entrywise(ReLU, isnonnegative)7

8
IntervalConstraint(a, b) = Entrywise(x -> clamp(x, a, b), x -> a <= x <= b)9

23An Optimization Framework for Constrained Tensor Factorization

Randomizing the order of updates

Include the boolean options;

group_by_factor: Groups updates on the same factor together

random_order: Updates in a new random order each iteration

recursive_random_order: Inner grouped updates performed
in a random order (recursively)

BlockedUpdate(1
 MomentumUpdate(0, lipschitz, combine)2
 GradientDescent(0, gradient, LipschitzStep)3
 Projection(0, Entrywise(ReLU, isnonnegative))4
 MomentumUpdate(1, lipschitz, combine)5
 GradientDescent(1, gradient, LipschitzStep)6
 Projection(1, Entrywise(ReLU, isnonnegative))7
)8

24An Optimization Framework for Constrained Tensor Factorization

