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Overview

e half new developments in tensor factorization / half
advertisement

e propose a signal demixing framework and implementation in
Julia using constrained tensor factorization

e use this tool to separate real signal mixtures in applications
like geology, biology, and music

e casily extendable to a broader class of tensor decompositions
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Setting: Multiple Unlabeled Mixtures

Unmix {y, } into a small number of unknown sources {b, } with
unknown weights {a;, }:

y; = a11b1 + ai2bs + -+ a1rbr

y; = anbi + arbs + --- + arrbr.

An Optimization Framework for Constrained Tensor Factorization



Setting: Multiple Unlabeled Mixtures

y; = ai1bi -

- a12b2 A

Y — aribi

- araba -

- a1rbr

- arpbr

e Mixtures can be multivariable functions y, : RY — R

e or directly measured vectors/matrices/tensors y;|j1, - . . , jN]

Either way, package data into a tensor Y by sampling the

mixtures {y, } or stacking the observations:

Y[iajlv R 7jN] — Yi(xl[le <o

, N iN]) = yilj1, - -5 In]-
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Model: Tucker-1 Tensor Factorization

e Factorize Y into a mixing matrix A times a source tensor B
using the Tucker-1 model [1]

e Y = B x; A with the entry-wise equation
. . R . . .
° Y[Zajh <. 7.]N] — Z’r’:l A[Z,T] ) B[rajla I 7.7N]

Figure 1: Example Tucker-1 decomposition for a 3rd-order tensor.
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Application: Sediment Analysis
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Figure 2: Input data tensor Y. Each depth fibre Y3, j, :| is a discretized probability density
for a different geological feature. Decomposed source distributions can be used to classify
grains. See our paper Tracing Sedimentary Origins in Multivariate Geochronology via
Constrained Tensor Factorization [2].
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Application: Spatial Transcriptomics
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Figure 3: Spatial transcriptomics factorization model. Spatial distribution of many genes can
be decomposed into few cell types. We uncover the gene expression and spatial distribution
of these cell types, and can label distinct regions accordingly.
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Application: Musical Instrument
Separation
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Figure 4: Audio source separation model. The short-time Fourier transform of a mixture can
be separated into harmonically distinct notes. These can be grouped by their spectral
similarity to recover instrument sources.
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BlockTensorDecomposition.jl

Least-Squares Optimization

Minimize the error between the model B x1 A and the data Y':

1
min (4, B) := _[|B x1 A - Y|5 st AcCy, BeCs.

Basic use:

A = abs.(randn(5, 3))
B = abs.(randn(3, 6, 7))
Y =B x1 A

options = (rank=3, model=Tuckerl, objective=L2(), constraints=nonnegative!)
decomposition, stats, kwargs = factorize(Y; options...)
(B_out, A out) = factors(decomposition)
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Algorithm

Block Projected Gradient Descent
Cyclically update factors with descent updates [3]:

1
Ly

A" =P, | A V 44(At, BY)

julia> kwargs[ :update]

BlockedUpdate(
MomentumUpdate(@, lipschitz, combine)
GradientDescent(©, gradient, LipschitzStep)
Projection(@, Entrywise(RelLU, isnonnegative))
MomentumUpdate(1l, lipschitz, combine)
GradientDescent(1l, gradient, LipschitzStep)
Projection(1l, Entrywise(RelLU, isnonnegative))
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Guarantees

Converges to a block-wise minimum and stationary point:

(A", B*) < ' ((A*,B),l(A,B")}.
(4',B") < min {4, B),¢(4,B"))

Set tolerance=0.01 to ensure RelativeError is less that 1 %.

julia> display(stats_data)

Row | Iteration ObjectiveValue GradientNNCone RelativeError
Int64 Float64 Float64 Float64

1 0 0.618283 1.78212 0.505625

2 1 0.25426 1.23183 0.324246

3 2 0.104661 0.605968 0.20803
45 44 0.000297298 0.00446732 0.0110874
46 45 0.000250057 0.00410569 0.0101684
47 46 0.000210449 0.003773 0.00932844
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The Bells and Whistles

An Optimization Framework for Constrained Tensor Factorization

12



Multi-Scaled Decomposition

Use continuous dims to optimize over multiple scales for faster
convergence.

julia> @time decomposition, stats data, kwargs = factorize(Y; options...);
11.828295 seconds (214.97 k allocations: 15.197 GiB, 32.42% gc time)

julia> @time decomposition, stats data, kwargs = multiscale factorize(Y;
continuous_dims=[2, 3, 4], options...);
2.335374 seconds (201.33 k allocations: 2.905 GiB, 25.26% gc time)
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Figure 5: Rather than discretizing the mixtures {y, } on a fine grid from the start, optimize
over a cheaper, coarse discretization with fewer points and gradually refine.
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Rescaling trick

If you have simplex constraints

e Ac Ay ={AcRUEIE Al ] =1, vz'}

e Be Ap = fAc REXJXK‘Zle Bir,j, k| =1, Vr,j}
Updates look like: 5

e« A" =P, (A" - iVAE(At,Bt)) — 4

» B' = P,,(B' — [~ VB{(A", B)) -
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Rescaling trick

e Relax simplex constraintsto A > 0, B > 0
o and < > Bpjr, = 1forall 7 (vs 3, By = 1forallr, j)

Updates now look like:
At—|—1/2 (At . ZVAK(A—t Bt))
s RitY/2 _ mpt 1 t+1/2 ot
B = (B 7 L v BL(A ,B"))+
o Bt-l—l _ C—lBt—|—1/2 and At—l—l _ At—|—1/2C

1
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Rescaling vs simplex projection

o Compare stationary condition: dist (0, 0(£ + d>0)(A,B)) at
every iteration for different constraint methods

10
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Many more...

e Momentum and second-order acceleration like Block-lipschitz
constants (Hessian approximations)

e Rank detection

e Other factorizations like full Tucker, CP-Decomposition,
custom

e Other constraints like p-norms, interval, linear, custom
e Other block update order: fully random, partial random

e Coming soon: Other objectives like 1-norm, entropy, KL-
divergence
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17



References

[1] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,” SIAM Rev.,
vol. 51, no. 3, pp. 455-500, Aug. 2009, do1: 10.1137/07070111X.

[2] N. Graham, N. Richardson, M. P. Friedlander, and J. Saylor, “Tracing Sedimentary
Origins in Multivariate Geochronology via Constrained Tensor Factorization,”
Mathematical Geosciences, Feb. 2025, do1: 10.1007/s11004-024-10175-0.

[3] Y. Xu and W. Yin, “A Block Coordinate Descent Method for Regularized
Multiconvex Optimization with Applications to Nonnegative Tensor Factorization
and Completion,” SIAM J. Imaging Sci., vol. 6, no. 3, pp. 1758—-1789, Jan. 2013, do1:
10.1137/120887795.

[4] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a "Kneedle" in a
Haystack: Detecting Knee Points in System Behavior,” in 2011 3 1st International
Conference on Distributed Computing Systems Workshops, Jun. 2011, pp. 166—171.
doi: 10.1109/ICDCSW.2011.20.

e
! -
TR L oL

https://github.com/MPF-Optimization-Laboratory/Matrix TensorFactor.jl
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Estimating Rank

e Usually we need to know R in advance

e For 1-parameter factorizations like Tucker-1 and CP-
Decomposition...

o Let f(r) = || X} — Y| »/||Y]| 5 be final relative error with a
rank r factorization

e Pick the r at the maximum curvature [4]

R — arg Mmax RK¢\r) .— f”(r)
o) (L (p
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Block-Lipschitz Constant

1
Cl,fz—i_rl . PCn,r (afl,’r’ L%r V.fﬁa”’ (a’%>r)) !

where
fhola) =SB AT, AT, AL (a), AL AR -
and

0 ot 1 T

A%,'r (a) — af”:ll af;;*l—l a aflﬂ“ﬂLl ag’R”
! Lol v
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Block-Lipschitz Constant

AL P, (44— VAL,

where
fr(a) = %H[Ba A?rlv x '7Afzt117A%’Afl+1’ '
and
VR I
n =\ A1 " App1 OGnr Qg
| [
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Momentum

Before a gradient step, we move A further in the direction of
travel

AL AL 4 Wb (AL — ALY
— Al (ian + w%) — Afz_lw%

where the amount of momentum 1s determined by

=
Wi, <— min (d)t,(? L,Z (Ln)l) .
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Examples of Constraints

struct GenericConstraint <: AbstractConstraint
apply: :Function
# input a AbstractArray -> mutate it so that “check™ would return true
check: :Function

end

function (C::GenericConstraint)(D: :AbstractArray)

(C.apply) (D)
end

check(C: :GenericConstraint, A::AbstractArray) = (C.check)(A)

12scale 1slices! = ScaledNormalization(l2norm;
whats normalized=(x -> eachslice(x; dims=1)))

llnormalize rows! = ProjectedNormalization(llnorm, llproject!;
whats _normalized=eachrow)

nonnegative! = Entrywise(RelLU, isnonnegative)

IntervalConstraint(a, b) = Entrywise(x -> clamp(x, a, b), x -> a <= X <= b)
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Randomizing the order of updates

BlockedUpdate(
MomentumUpdate(@, lipschitz, combine)
GradientDescent(@, gradient, LipschitzStep)
Projection(@, Entrywise(RelLU, isnonnegative))
MomentumUpdate(1l, lipschitz, combine)
GradientDescent(1l, gradient, LipschitzStep)
Projection(l, Entrywise(ReLU, isnonnegative))

)

Include the boolean options;

e group_by factor: Groups updates on the same factor together
e random_order: Updates in a new random order each iteration

e recursive_random order: Inner grouped updates performed
in a random order (recursively)
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