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Overview
half new developments in tensor factorization / half
advertisement

propose a signal demixing framework and implementation in
Julia using constrained tensor factorization

use this tool to separate real signal mixtures in applications
like geology, biology, and music

easily extendable to a broader class of tensor decompositions
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Setting: Multiple Unlabeled Mixtures
Unmix  into a small number of unknown sources  with
unknown weights :
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Setting: Multiple Unlabeled Mixtures

Mixtures can be multivariable functions 

or directly measured vectors/matrices/tensors 

Either way, package data into a tensor  by sampling the
mixtures  or stacking the observations:
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Model: Tucker-1 Tensor Factorization
Factorize  into a mixing matrix  times a source tensor 
using the Tucker-1 model [ ]

 with the entry-wise equation

Figure 1: Example Tucker-1 decomposition for a rd-order tensor.

Y A B

1

Y = B A×1

Y [i, , … , ] = A[i, r] ⋅ B[r, , … , ]j1 jN ∑R
r=1 j1 jN

3
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Application: Sediment Analysis

Figure 2: Input data tensor . Each depth fibre  is a discretized probability density
for a different geological feature. Decomposed source distributions can be used to classify

grains. See our paper Tracing Sedimentary Origins in Multivariate Geochronology via
Constrained Tensor Factorization [ ].

Y Y [i, j, :]

2
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Application: Spatial Transcriptomics

Figure 3: Spatial transcriptomics factorization model. Spatial distribution of many genes can
be decomposed into few cell types. We uncover the gene expression and spatial distribution

of these cell types, and can label distinct regions accordingly.

7An Optimization Framework for Constrained Tensor Factorization



Application: Musical Instrument
Separation

Figure 4: Audio source separation model. The short-time Fourier transform of a mixture can
be separated into harmonically distinct notes. These can be grouped by their spectral

similarity to recover instrument sources.
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BlockTensorDecomposition.jl
Least-Squares Optimization
Minimize the error between the model  and the data :

Basic use:

B A×1 Y

ℓ(A, B) := s.t A ∈ ,  B ∈ .min
A,B

1
2

∥B A − Y ∥×1
2
F CA CB

A = abs.(randn(5, 3))1
B = abs.(randn(3, 6, 7))2
Y = B ×₁ A3

4
options = (rank=3, model=Tucker1, objective=L2(), constraints=nonnegative!)5
decomposition, stats, kwargs = factorize(Y; options...)6
(B_out, A_out) = factors(decomposition)7
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Algorithm
Block Projected Gradient Descent
Cyclically update factors with descent updates [ ]:3

At+1 = ( − ℓ( , )) .PCA
At 1

LA

∇A At Bt

julia> kwargs[:update]1
BlockedUpdate(2
    MomentumUpdate(0, lipschitz, combine)3
    GradientDescent(0, gradient, LipschitzStep)4
    Projection(0, Entrywise(ReLU, isnonnegative))5
    MomentumUpdate(1, lipschitz, combine)6
    GradientDescent(1, gradient, LipschitzStep)7
    Projection(1, Entrywise(ReLU, isnonnegative))8
)9
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Guarantees
Converges to a block-wise minimum and stationary point:

Set tolerance=0.01 to ensure RelativeError is less that .

ℓ( , ) ≤ {ℓ( , B), ℓ(A, )} .A∗ B∗ min
A∈ ,B∈CA CB

A∗ B∗

1 %
julia> display(stats_data)1
 Row │ Iteration  ObjectiveValue  GradientNNCone  RelativeError2
     │ Int64      Float64         Float64         Float643
─────┼──────────────────────────────────────────────────────────4
   1 │         0     0.618283         1.78212        0.5056255
   2 │         1     0.25426          1.23183        0.3242466
   3 │         2     0.104661         0.605968       0.208037
   ⋮ │     ⋮            ⋮               ⋮               ⋮8
  45 │        44     0.000297298      0.00446732     0.01108749
  46 │        45     0.000250057      0.00410569     0.010168410
  47 │        46     0.000210449      0.003773       0.0093284411
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The Bells and Whistles
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Multi-Scaled Decomposition
Use continuous_dims to optimize over multiple scales for faster
convergence.

Figure 5: Rather than discretizing the mixtures  on a fine grid from the start, optimize
over a cheaper, coarse discretization with fewer points and gradually refine.

julia> @time decomposition, stats_data, kwargs = factorize(Y; options...);1
11.828295 seconds (214.97 k allocations: 15.197 GiB, 32.42% gc time)2

julia> @time decomposition, stats_data, kwargs = multiscale_factorize(Y;1
      continuous_dims=[2, 3, 4], options...);2
2.335374 seconds (201.33 k allocations: 2.905 GiB, 25.26% gc time)3

{ }yi
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Rescaling trick
If you have simplex constraints

Updates look like:

A ∈ = {A ∈ A[i, r] = 1, ∀i}ΔA R
I×R
+

∣∣∑
R
r=1

B ∈ = {A ∈ B[r, j, k] = 1, ∀r, j}ΔB R
R×J×K
+

∣∣∑
K
k=1

= ( − ℓ( , ))At+1 PΔA
At 1

LA
∇A At Bt

= ( − ℓ( , ))Bt PΔA
Bt 1

LB
∇B At+1 Bt
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Rescaling trick
Relax simplex constraints to , 

and  for all  (vs  for all )

Updates now look like:

 and 

where 

A ≥ 0 B ≥ 0

= 11
J
∑jk Brjk r = 1∑k Brjk r, j

= ( − ℓ( , )At+1/2 At 1
LA

∇A At Bt )+

= ( − ℓ( , )Bt+1/2 Bt 1
LB

∇B At+1/2 Bt )+

=Bt+1 C−1Bt+1/2 = CAt+1 At+1/2

=Crr
1
J
∑jk Brjk

An Optimization Framework for Constrained Tensor Factorization



Rescaling vs simplex projection
Compare stationary condition:  at
every iteration for different constraint methods

dist (0, ∂(ℓ + )(A, B))δ≥0
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Many more…
Momentum and second-order acceleration like Block-lipschitz
constants (Hessian approximations)

Rank detection

Other factorizations like full Tucker, CP-Decomposition,
custom

Other constraints like p-norms, interval, linear, custom

Other block update order: fully random, partial random

Coming soon: Other objectives like 1-norm, entropy, KL-
divergence
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Estimating Rank
Usually we need to know  in advance

For 1-parameter factorizations like Tucker-1 and CP-
Decomposition…

Let  be final relative error with a
rank  factorization

Pick the  at the maximum curvature [ ]

R

f(r) = /∥ − Y ∥X∗
r F ∥Y ∥F

r

r 4

= arg (r) :=R̂ max
r

κf

(r)f ′′

(1 + ( (r)f ′ )2)3/2
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Block-Lipschitz Constant

where
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Block-Lipschitz Constant
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Momentum
Before a gradient step, we move  further in the direction of
travel

where the amount of momentum is determined by

A

←Â
t

n + ( − )At
n ωt

n At
n At−1

n

= ( + ) −At
n idRn

ωt
n At−1

n ωt
n

← min( , δ ) .ωt
n ω̂

t (L̂
t−1
n L̂

t

n)−1
− −−−−−−−−

√
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Examples of Constraints
struct GenericConstraint <: AbstractConstraint1
    apply::Function2
    # input a AbstractArray -> mutate it so that `check` would return true3
    check::Function4
end5

6
function (C::GenericConstraint)(D::AbstractArray)7
    (C.apply)(D)8
end9

10
check(C::GenericConstraint, A::AbstractArray) = (C.check)(A)11

l2scale_1slices! = ScaledNormalization(l2norm;1
                   whats_normalized=(x -> eachslice(x; dims=1)))2

3
l1normalize_rows! = ProjectedNormalization(l1norm, l1project!;4
                    whats_normalized=eachrow)5

6
nonnegative! = Entrywise(ReLU, isnonnegative)7

8
IntervalConstraint(a, b) = Entrywise(x -> clamp(x, a, b), x -> a <= x <= b)9
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Randomizing the order of updates

Include the boolean options;

group_by_factor: Groups updates on the same factor together

random_order: Updates in a new random order each iteration

recursive_random_order: Inner grouped updates performed
in a random order (recursively)

BlockedUpdate(1
    MomentumUpdate(0, lipschitz, combine)2
    GradientDescent(0, gradient, LipschitzStep)3
    Projection(0, Entrywise(ReLU, isnonnegative))4
    MomentumUpdate(1, lipschitz, combine)5
    GradientDescent(1, gradient, LipschitzStep)6
    Projection(1, Entrywise(ReLU, isnonnegative))7
)8
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