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Summary
•Novel method for representing and
decomposing 1D signals
•Represent signal in a random wavelet “basis”
•Find representation via Spectral Projected
Gradient with L1 minimization (SPGL1)
•Decompose representation into modes via
Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) or
frequency filters

Problem Statement

•Given a 1D signal y, find a sparse representation
•Decompose it into simple modes

Figure 1: Decomposition Visualisation

Wavelet “Basis”

g(t) = e−2(t−τ )2
w2 sin(2πf · t + φ),

(τ, f, φ) ∈ U[0,tmax]×[0,fmax]×[0,2π]

Figure 2: Example real-valued Gabor wavelet with
(τ, f, φ;w) = (0.4, 10, 1.26; 0.2).

Representation Algorithm

input: t, y ∈ RN ,M ∈ Z+, w, fmax ∈ R+,
r ∈ ]0, 1[

Generate {τm, fm, φm}Mm=1;
Generate M wavelets gm ∈ RN ;
Store wavelets by column in a matrix
G ∈ RN×M ;
Solve
x∗ = arg min

x∈RM

‖x‖1 s.t. ‖Gx− y‖2 < r‖y‖2;

output: x∗, G, {τm, fm, φm}Mm=1

•Reconstruct y ≈ Gx∗ =
M∑
m=1

xmgm

•Relative error ‖Gx
∗ − y‖2
‖y‖2

is less than r

Decomposition Algorithm

input: x∗, G, (τm, fm)Mm=1,
min_samples∈ Z+, ε, s ∈ R+

Define (τmj
, fmj

)M
′

j=1 := {(τm, fm)|x∗m 6= 0};
Scale input points to obtain (τmj

, s · fmj
);

Use DBSCAN to label each point by cluster to
obtain {`mj

} where `mj
∈ {−1, 0, · · · , K − 1};

Extract K modes:
yk = ∑

m∈Ik
x∗mgm, Ik = {mj|`mj

= k − 1};

output: {yk}K
′

k=1

•Alternatively decompose using known conditions
•Ex. a band-pass filter could be represented as
I = {mj|a < fmj

< b}

Mathematical Example

Input: y(t) = y1(t) + y2(t) + y3(t) defined by
y1(t) = πt, t ∈ [0, 5/4[
y2(t) = cos(40πt), t ∈ [0, 5/4[

y3(t) = cos
(4

3
(
(2πt− 10)3 − (2π − 10)3 + 20π(t− 1)

))
t ∈ ]1, 2].

Parameters: fmax = 80,M = 16 000, r = 5%,
w = 0.1 s, min_samples = 3, ε = 0.1, s = 1/80.
“Synchrosqueezed wavelet transforms: An empirical mode decomposition-
like tool”; Daubechies, Lu, & Wu; Applied and Computational Harmonic
Analysis, 2011. DOI:10.1016/j.acha.2010.08.002

Figure 3: Segmentation of nonzero wavelets into four modes.
Frequency and time-shifts of nonzero wavelets are plotted
where colour represents labelling from DBSCAN.

Figure 4: Learned signal and decomposed modes vs ground
truth. Note input was a noisy source (5% Gaussian), and
mode 4 was added to mode 1 in the second row.

Flute and Guitar Decomposition

Input: y(t) = y1(t) + y2(t) where y1(t) is a flute
and y2(t) is a guitar clip around 1.85 s long.
Parameters: fmax = 44 100Hz/16,M = 51 080,
N = 10 200, r = 8%, w = 0.03 s.

Figure 5: Segmentation via slice at f = 480Hz

Figure 6: Extracted flute and guitar vs original
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