20 Oct 2024 | INFORMS 2024 | Seattle, WA
Department of Mathematics
Department of Computer Science
Departments of Computer Science & Mathematics
Department of Earth, Ocean and Atmospheric Sciences
With these rocks…
Source separation / signal decomposition
have different mixtures \(\mathbf{y}_i\) of (the same) sources \(\mathbf{b}_r\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\quad\qquad \mathbf{y}_i = \sum_{r=1}^R a_{ir} \mathbf{b}_r \qquad i=1, 2, \dots, I\)
Goal 1: estimate the sources \(\mathbf{b}_r\)
Goal 2: estimate the contribution of each source \(a_{ir}\)
In our case, have the constraints:
Contributions / advancements
\[ \min_{\mathbf A, \mathbf B} \left\{ \ell(\mathbf A, \mathbf B):=\tfrac{1}{2}\left\lVert \mathbf Y-\mathbf A \mathbf B \right\rVert_{F}^2 \,\middle\vert\, \mathbf A \in \Delta_{\mathbf A},\ \mathbf B \in \Delta_{\mathbf B} \right\} \]
\(\left\lVert \mathbf \cdot \right\rVert_{F}^2\) squared Frobenius norm (sum-of-squares)
\(\Delta_{\mathbf A}\) non-negative entries & rows sum to 1
\(\Delta_{\mathbf B}\) non-negative entries & fibres \(\mathbf B_{ij:}\) sum to 1
Density Separation with Tensor Factorization