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Overview

e The unmixing problem
e Applications like geology, biology, and music

e Example method one: sparse random features

e Example method two: constrained tensor factorization



The Problem



I’m getting mixed signals...

Many real world applications involve mixtures of data

§ +¢&

Gene expression
vectors

-.A.EL,. L —

Songs are mixtures of Gene counts are Rocks are mixtures of
different instruments influenced by cell types mineral sources



What do we want?

Goal: Given data without labeled examples, determine the
underlying sources.

Why? For IDing sources, pre-processing, de-noising

(observed sedimentary “sinks”)




Setting 1: Single Signal Separation

Unmix a signal y € R" into sources s, € R" forr=1,..., R:
y =81 +S2+ -+ SR

[1I-defined without assumptions on what s, should look like.

e Should they be sparse?
e Low rank (if signal 1s a matrix)?

e Fit a particular pattern?



Setting 2: Multiple Mixtures

Unmix {y, } into a small number of unknown sources {b, } with
unknown weights {a;; }:

Y1 — ai1b; + ai2bs + -+ ajrbg

y; =anby +apby + -4+ arpbpg.

Each source s;,. 1s broken up into the product a;,.b;.

Ok if you have multiple mixtures of the same sources.



If I had all the data in the world...

e Train a deep neural network f(y; 0) = (s1,...,Sg) on known
pairs of mixtures y and sources (s1,...,SR)

e Highly specialized to the specific task (e.g. music, 1images)
e Takes time, energy, and /ots of data to train the model

e 700 of architectures (e.g convolutional, LSTMs, transformers)
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Figure 1: Example “U-net” NN for voice/instrument separation [ ].



Solution 1: Sparse
Feature Decomposition



Back to Single Signal Separation

Assume the sources s, are some multiple of elements b, from a
“basis” B, and R 1s small. Then,

Different conditions on a mean:

¢ a, € R =— y € span(B) e a, >0 = y € cone(B)
> a,=1 = y € aff(B)

ea,>0and > a=1 = y € conv(B)
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An optimization problem

In practice there might be noise, so we would like to minimize
the error between the data y and our model:

nclbin y — Z a,b,

Can add the previously mentioned conditions on a, as needed.
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Sparse Random Mode Decomposition

e Assume sources are intrinsic mode
functions s, (t) = a.(t) sin(¢,(t))

e Varying amplitude a,(t) and
frequency w,(t) = ¢ (t)

>

frequency

e * e Look like curves on a time-
frequency graph
e Two step process [ |

1. Write your signal as a sparse sum of a wavelet-like features

2. Cluster nearby features 1nto sources
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Part one: Representation
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Figure 2: Representing a signal sparsely in time-frequency localized features with SRMD.

Each dot (75, w ;) corresponds to one feature b;(¢) where

bi(t) = e ) 2% sin(2mw t + ).
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Part one: Representation Details

e Generate many random features b
e Express y as the sum of as few “basis” elements as possible

e Ensure the model and data remain close

min [a], st [ly —Ball, < eyl

o Bz-,,,, — bj (tz) where bj (t) — 6_(t_Tj)2/2w2 SiIl(27TCdjt -+ gbj)

e Time-shifts 7;, frequencies w;, and phases ¢; are random

e Solve using SPGL1 (Van Den Berg & Friedlander 2009)
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Part two: Clustering
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e Density Based Spatial Clustering of Applications with Noise
DBSCAN (Ester et al. 1996)

e Recursively groups points within a given neighbourhood
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Part two: Clustering Details

e Collect non-zero coefficients C = {(7;,w;) | a; # 0}
e Partition C into clusters {C, }

» Use DBSCAN (Ester et al. 1996)

= Groups points (7;,w;) that are close together

e Reconstruct one source per cluster

.S, = Zajbj where J, = {j | (7j,w;) € C;}

jed,
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Synthetic Numerical Example
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Figure 3: Flowchart of SRMD on the sum of the sources:
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Fails for complicated songs...
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Solution 2: Constrained
Tensor Decomposition



Setting 2: Multiple Mixtures

e If the first setting was a single recording of a band,

e This example would be like setting up 10 microphones in
different locations

e Major Advantage: No assumptions on the types of sources!

e Only need each mixture be a combination of the same sources
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Setting 2: Multiple Mixtures

Y1 — a11b1 + a12b2 + -0+ aleR

y; =anb; +apby 4+ -4+ ajprbpg

Package data into a tensor Y by sampling the mixtures {y; } or
stacking the observations

Figure 4: Example data tensor Y and it’s decomposition into A and B.
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Model: Tucker-1 Tensor Factorization

e Factorize Y into a mixing matrix A times a source tensor B
using the Tucker-1 model (Kolda and Bader 2009)

e Y = B x; A with the entry-wise equation
. . R . . .
° Y[27]17°'°7]N] — Zrzl A[7’7T] °B[r7]17°'°7]N]

Figure 5: Example data tensor Y and it’s decomposition into A and B.
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Application: Sediment Analysis
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Figure 6: Input data tensor Y. Each depth fibre Y|4, 7, :] is a discretized probability density
for a different geological feature. We decompose with [Graham er a/. 2025].
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Application: Sediment Analysis
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Figure 7: Decomposition of the input tensor Y into mixing coefficients A and source
distributions B.
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Application: Sediment Analysis
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Figure 8: Three learned density sources. Example grain sample highlighted in green ovals.

Estimate probability grain g came from source 7:

A

pr=PlgeVy|g~B;)= H;'Izl Bir, j, k;]

* Vg = |2y, xl(,;ﬁl)] X oo X @ gy, xj(,;ﬁl)] is the box that contains the measured grain

Label based on the most likely probability ¥ = argmax,.p,
Assign confidence score = log;, (p(l) / p(g))



Application: Spatial Transcriptomics
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Figure 9: Spatial transcriptomics factorization model. Spatial distribution of many genes can
be decomposed into few cell types. We uncover the gene expression and spatial distribution
of these cell types, and can label distinct regions accordingly.
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Application: Spatial Transcriptomics
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Figure 10: Learn cell types and their spatial presence (heatmaps) matched with known cell
types (Branchial Arch, Brain, Heart, and Cavity).
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Application: Musical Instrument
Separation
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Figure 11: Audio source separation model. The short-time Fourier transform of a mixture can
be separated into harmonically distinct notes. These can be grouped by their spectral
similarity to recover instrument sources.
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Application: Musical Instrument
Separation

R
B

Figure 12: (Top) Cross-correlation matrix between notes’ frequencies before and after
threshold. (Bottom) Separated guitar and flute spectrograms.
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Computing Tensor
Factorizations



Constrained Optimization

Minimize the error between the model B x1 A and the data Y:

rili]ng(A,B) st A e€Cy, BeC(Cp.

Implementation 1n Julia [Richardson ef al. 2025]:

using BlockTensorFactorization
Y = load data()

options = (rank=3, model=Tuckerl, objective=L2(), constraints=nonnegative!)
decomposition, stats, kwargs = factorize(Y; options...)

(B, A) = factors(decomposition)
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Algorithm:

Block Projected Gradient Descent
Cyclically update factors with descent updates (Xu et al. 2023)

A =P, (A —aV LAY BY)).
Converges to a block-wise minimum and stationary point:

X E S < . * Xx .
(A", B") < acin {{(A",B),/(A,B")}
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Estimating Rank

e Usually R needs to be known 1in advance, but can be estimated

o Let f(r) = || X, — Y| »/||Y|l be final relative error with a
rank r factorization X

e Pick the r at the maximum curvature (Satopaa et al. 2011)
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Multi-Scaled Decomposition

Optimize over multiple scales for faster convergence.
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Figure 13: (Left) Optimize over cheaper, coarse discretization with fewer points and refine.
(Right) Performance scales better with problem size [ ].
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Conclusion

e Real world data is often a mixture of individual sources
e Want to separate these sources for analysis, denoising, etc.
e Looked at two techniques when you have limited data
1. Single Source Separation via Sparse Feature Decomposition

2. Multiple Mixture Separation via Tensor Factorization
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Under the hood: SPGL1
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Figure 14: Spectral Projected-Gradient with L1-norm solves LASSO problems for growing
sparsity tolerances until the residual is small enough (Van Den Berg & Friedlander 2009).

min, |y —Bal|, st |ali <7
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Compare to other methods

1.0
4 3 ?
[=} 0.5 1
= o5 ~ ™
w ] ] ]
g 2 3 T 00 g o
2 = 1 = =
= o -0.5 -1
0
1 -1.0 -2
0 1 2 (o] 1 2 0 1 2 (o] 1 2
Time Time Time Time
8 1.0
6 2
6
[=] 0.5
2 — 4 ~ m 1
w4 [ v []
N ° - 00 T 0
< <] <] <3
= z 2 = =
= -0.5 -1
[¢]
0 -1.0 -2
0 1 2 0 1 2 0 1 2 o 1 2
Time Time Time Time

True, CEEMDAN
o N IS
Mode 1
o = N w )
Mode 2
Ld s o e
o w © Ww o
Mode 3
b e N

0 1 2 (o] 1 2 0 1 2 ] 1 2
Time Time Time Time
4 2
4 3 1
= — )
S 2 g 2 8
E £’
= 1
0 -1
0
0 1 2 0 1 2 0 1 2 0 1 2
Time Time Time Time

True, VMD
1) ~ 'S
Mode 1
o = N w £
Mode 2
Lo e o
Mode 3
& ° -

o
-
[N)
o
i
[N)
o
-
N
o
-
[N)

Time Time Time Time
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Block-Lipschitz Constant

1
afl_i_rl < PCn,r (a'%ﬂ“ L%r Vf7€7r (a’%a”')) y

where
f}i,r(a) — %H[B, A’i“, .. .,Af;ill,Afw(a),Ale, .
and

1 T T 1

Al (a) = af;ﬁl a’f;,rrl—l a a’fz,r+1
o Lo
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Block-Lipschitz Constant

A P (Ag _v fg(Ag)(ﬁi)—l) |

where
Fila) = (B AL, ... AL AL AL,
and
" 4 o1
Ai = | af | az,r_l A afz,rﬂ
ol I

A .

42



Momentum

Before a gradient step, we move A further in the direction of
travel

A At 4wt (AL — AL
= Al (idg, + wh) — AW

where the amount of momentum 1s determined by

wn%mm( o 5\/At : At) 1).

43



Examples of Constraints

struct GenericConstraint <: AbstractConstraint
apply: :Function
# input a AbstractArray -> mutate it so that “check™ would return true
check: :Function

end

function (C::GenericConstraint)(D: :AbstractArray)
(C.apply)(D)

end

check(C: :GenericConstraint, A::AbstractArray) = (C.check)(A)

12scale 1slices! = ScaledNormalization(l2norm;
whats normalized=(x -> eachslice(x; dims=1)))

llnormalize rows! = ProjectedNormalization(llnorm, llproject!;
whats normalized=eachrow)

nonnegative! = Entrywise(RelLU, isnonnegative)

IntervalConstraint(a, b) = Entrywise(x -> clamp(x, a, b), x -> a <= X <= b)
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Randomizing the order of updates

BlockedUpdate(
MomentumUpdate(@, lipschitz, combine)
GradientDescent(@, gradient, LipschitzStep)
Projection(@, Entrywise(RelLU, isnonnegative))
MomentumUpdate(1l, lipschitz, combine)
GradientDescent(1l, gradient, LipschitzStep)
Projection(l, Entrywise(ReLU, isnonnegative))

)

Include the boolean options;

e group by factor: Groups updates on the same factor together
e random_order: Updates in a new random order each iteration

e recursive_random order: Inner grouped updates performed
in a random order (recursively)
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Rescaling trick

If you have simplex constraints

eAdcA, =1

e Be A =

J;
r N 7/

IXR
Ac R

SF Afi, ] = 1, vz'}
A &€ REXJXK‘Z£{:1 B[T,j, k] — 17 Vraj}

Updates look like: K

« AT = Py, (A" — - Val(A',BY)) — I &
+ B' = P5,(B' — 2 VB{(A",BY)) L e

——

N

7 R~
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Rescaling trick

e Relax simplex constraintsto A > 0, B > 0
e and % D & Brie = Lforall v (vs ), Byj, = 1 forall r, j)

Updates now look like:

At—|-1/2 (At . _Av K(At Bt))

« B2 = (B' — 2 Vg((A"/? BY)),
o Bt—‘,—l _ C—lBt—|—1/2 and At—|—1 _ At—l—l/ZC
e where C,, = = 2 it Brit
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Rescaling vs simplex projection

o Compare stationary condition: dist (0, 0(£ + d>¢)(A,B)) at
every iteration for different constraint methods
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