Unsupervised Signal Demixing

Optimization and Applications
20 Jan 2026 | Burnaby, BC

Nicholas Richardson
Department of Mathematics

UBC| THE UNIVERSITY 'ONFSATF');BE[E)
W OF BRITISH COLUMBIA 3§ SIMON FRASER MATHEMATICS
UNIVERSITY University of British Columbia

e BMath & MMath at the
University of Waterloo (2020 & 2022)

e PhD Candidate supervised by
Michael P. Friedlander at UBC

e Research in Optimization, Signal
Processing, Tensor Factorization

e Fun fact. 1 sing & beatbox with
The Northwest Collective!

o Website:

https://njericha.github.io/

Overview

e The unmixing problem
e Applications like geology, biology, and music

e Example method one: sparse random features

e Example method two: constrained tensor factorization

The Problem

I’m getting mixed signals...

Many real world applications involve mixtures of data

§ +¢&

Gene expression
vectors

-.A.EL,. L —

Songs are mixtures of Gene counts are Rocks are mixtures of
different instruments influenced by cell types mineral sources

What do we want?

Goal: Given data without labeled examples, determine the
underlying sources.

Why? For IDing sources, pre-processing, de-noising

(observed sedimentary “sinks”)

Setting 1: Single Signal Separation

Unmix a signal y € R" into sources s, € R" forr=1,..., R:
y =81 +S2+ -+ SR

[1I-defined without assumptions on what s, should look like.

e Should they be sparse?
e Low rank (if signal 1s a matrix)?

e Fit a particular pattern?

Setting 2: Multiple Mixtures

Unmix {y, } into a small number of unknown sources {b, } with
unknown weights {a;; }:

Y1 — ai1b; + ai2bs + -+ ajrbg

y; =anby +apby + -4+ arpbpg.

Each source s;,. 1s broken up into the product a;,.b;.

Ok if you have multiple mixtures of the same sources.

If I had all the data in the world...

e Train a deep neural network f(y; 0) = (s1,...,Sg) on known
pairs of mixtures y and sources (s1,...,SR)

e Highly specialized to the specific task (e.g. music, 1images)
e Takes time, energy, and /ots of data to train the model

e 700 of architectures (e.g convolutional, LSTMs, transformers)

||||| - STFT Magnitude) N Output:
R
£ 2 13
B =
>
g nn § & $
=3 El Fz 3 v
g reshape reshape Z 1
& = ==
o — Kernal Shape: - " Kernal Shape: — 16 x 1 vec — —_— & == - =
o 257 x 1 174 time bins 1x4 171 time bins 171 time bins 174 time bins
-
10 944 vector 0 944 x 1 vector @ @

174 time bins x1 1

Skip Connections

Figure 1: Example “U-net” NN for voice/instrument separation [].

Solution 1: Sparse
Feature Decomposition

Back to Single Signal Separation

Assume the sources s, are some multiple of elements b, from a
“basis” B, and R 1s small. Then,

Different conditions on a mean:

¢ a, € R =— y € span(B) e a, >0 = y € cone(B)
> a,=1 = y € aff(B)

ea,>0and > a=1 = y € conv(B)

11

An optimization problem

In practice there might be noise, so we would like to minimize
the error between the data y and our model:

nclbin y — Z a,b,

Can add the previously mentioned conditions on a, as needed.

12

Sparse Random Mode Decomposition

e Assume sources are intrinsic mode
functions s, (t) = a.(t) sin(¢,(t))

e Varying amplitude a,(t) and
frequency w,(t) = ¢ (t)

>

frequency

e * e Look like curves on a time-
frequency graph
e Two step process [|

1. Write your signal as a sparse sum of a wavelet-like features

2. Cluster nearby features 1nto sources

13

Part one: Representation

80
o
il T 60
o
40
) ﬂ e
-
o 20
. L
0
0 1 2
Time

¢ _.~0 O

. 10 'g

’ » bt

. . c

) 3

: » - 10—2 E

% ¢ €

b % r Q2

tenenes oo Bl ° ¢ Y

“...? - 10~* E

.1 ™ '1'

TR L T lldlEL R 8
0.0 0.5 1.0 1.5 2.0

time (s)

Figure 2: Representing a signal sparsely in time-frequency localized features with SRMD.

Each dot (75, w ;) corresponds to one feature b;(¢) where

bi(t) = e) 2% sin(2mw t +).

14

Part one: Representation Details

e Generate many random features b
e Express y as the sum of as few “basis” elements as possible

e Ensure the model and data remain close

min [a], st [ly —Ball, < eyl

o Bz-,,,, — bj (tz) where bj (t) — 6_(t_Tj)2/2w2 SiIl(27TCdjt -+ gbj)

e Time-shifts 7;, frequencies w;, and phases ¢; are random

e Solve using SPGL1 (Van Den Berg & Friedlander 2009)

15

Part two: Clustering

80 : 80 $
5 . »
— —]
N S N < ¢
z - 3 z % !
- o ' »
9 oo o g &
£ 40 ' . : '
0 % ¢] % $
g— & o5 = b -
QO 20 | *ewemer Coh o Pl ." . g 20 "MHMII'—..{": .é.
= I~l"I“" = A !""*u;..‘:"
0 s s B wterly g™ afae e O_ _Hém;-lmiw.ﬁmmm
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
time (s) time (s)

e Density Based Spatial Clustering of Applications with Noise
DBSCAN (Ester et al. 1996)

e Recursively groups points within a given neighbourhood

16

Part two: Clustering Details

e Collect non-zero coefficients C = {(7;,w;) | a; # 0}
e Partition C into clusters {C, }

» Use DBSCAN (Ester et al. 1996)

= Groups points (7;,w;) that are close together

e Reconstruct one source per cluster

.S, = Zajbj where J, = {j | (7j,w;) € C;}

jed,

17

Synthetic Numerical Example

=
2 W
b=
[=]
. -3
Representation Decomposition
0
f : 1.0
a ' . "
-4 ‘-\-ﬁ 4 05
3 : 3 o
E 2 1’ L4 L i {‘ oo -g
A, oy : o z
P —— - 3 M B ek L el T SE LA 'f, o
o i ﬁ."' 3 ""'u—""; 0.5
LT T L L S P S — -
o 1 - 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
time (s) time (s) time (s) 2

ode 3

==
Mod

Figure 3: Flowchart of SRMD on the sum of the sources:
s1(t) = =t Lio5/4) (t), s2(t) = cos(407t) Lio5/4) (t),
s3(t) = cos(3 ((2mt — 10)® — (2m — 10)3) + 20m(t — 1)) 1119 (¢)

18

Fails for complicated songs...

1500

-
o
o
o

frequency (Hz)
wun
(-
o

2.0

1072

coefficient magnitude

19

Solution 2: Constrained
Tensor Decomposition

Setting 2: Multiple Mixtures

e If the first setting was a single recording of a band,

e This example would be like setting up 10 microphones in
different locations

e Major Advantage: No assumptions on the types of sources!

e Only need each mixture be a combination of the same sources

21

Setting 2: Multiple Mixtures

Y1 — a11b1 + a12b2 + -0+ aleR

y; =anb; +apby 4+ -4+ ajprbpg

Package data into a tensor Y by sampling the mixtures {y; } or
stacking the observations

Figure 4: Example data tensor Y and it’s decomposition into A and B.

22

Model: Tucker-1 Tensor Factorization

e Factorize Y into a mixing matrix A times a source tensor B
using the Tucker-1 model (Kolda and Bader 2009)

e Y = B x; A with the entry-wise equation
. . R . . .
° Y[27]17°'°7]N] — Zrzl A[7’7T] °B[r7]17°'°7]N]

Figure 5: Example data tensor Y and it’s decomposition into A and B.

23

Application: Sediment Analysis

J observed features

A
| |

/ Y[1, 1] -
I sinks - Y \ | K sampled values
lI (entries sum to 1)
- J\/Xf(

e B

Density

Eu Anomaly T1 Temperature
\)
|

area sums to 1

Figure 6: Input data tensor Y. Each depth fibre Y|4, 7, :] is a discretized probability density
for a different geological feature. We decompose with [Graham er a/. 2025].

24

Application: Sediment Analysis

features— A

)
m{@ {}of‘\ features—
85’ sources— .

«— SYUIS

«—S$22I1N0S

Figure 7: Decomposition of the input tensor Y into mixing coefficients A and source
distributions B.

25

Application: Sediment Analysis

Age 0.17

Eu_anomaly 0.15

0.12

Ti_ temp >~
_ 2
=
Th U 0.10 Z
0.07 8
LREE HREE =
- a,
0.05
Dy Yb
0.02
(Ce_Nd) Y
0
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
discretization index k discretization index k discretization index k grain
(source 1) (source 2) (source 3) sample

Figure 8: Three learned density sources. Example grain sample highlighted in green ovals.

Estimate probability grain g came from source 7:

A

pr=PlgeVy|g~B;)= H;'Izl Bir, j, k;]

* Vg = |2y, xl(,;ﬁl)] X oo X @ gy, xj(,;ﬁl)] is the box that contains the measured grain

Label based on the most likely probability ¥ = argmax,.p,
Assign confidence score = log;, (p(l) / p(g))

Application: Spatial Transcriptomics

x-location—
x-location—

cell types — 4

«— Souo3

«— Souo3 5

|
«— sadA3 100

Figure 9: Spatial transcriptomics factorization model. Spatial distribution of many genes can
be decomposed into few cell types. We uncover the gene expression and spatial distribution
of these cell types, and can label distinct regions accordingly.

27

Application: Spatial Transcriptomics

cell type 1 cell type 2

cell type 6 cell type 8
o o
4
é o o e
\ %
or v R
1 R

Figure 10: Learn cell types and their spatial presence (heatmaps) matched with known cell
types (Branchial Arch, Brain, Heart, and Cavity).

28

Application: Musical Instrument
Separation

frequency — note — frequency —

«— JuIn
«— aun

«— J10U

Figure 11: Audio source separation model. The short-time Fourier transform of a mixture can
be separated into harmonically distinct notes. These can be grouped by their spectral
similarity to recover instrument sources.

29

Application: Musical Instrument
Separation

R
B

Figure 12: (Top) Cross-correlation matrix between notes’ frequencies before and after
threshold. (Bottom) Separated guitar and flute spectrograms.

30

Computing Tensor
Factorizations

Constrained Optimization

Minimize the error between the model B x1 A and the data Y:

rili]ng(A,B) st A e€Cy, BeC(Cp.

Implementation 1n Julia [Richardson ef al. 2025]:

using BlockTensorFactorization
Y = load data()

options = (rank=3, model=Tuckerl, objective=L2(), constraints=nonnegative!)
decomposition, stats, kwargs = factorize(Y; options...)

(B, A) = factors(decomposition)

32

http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print

Algorithm:

Block Projected Gradient Descent
Cyclically update factors with descent updates (Xu et al. 2023)

A =P, (A —aV LAY BY)).
Converges to a block-wise minimum and stationary point:

X E S < . * Xx .
(A", B") < acin {{(A",B),/(A,B")}

33

Estimating Rank

e Usually R needs to be known 1in advance, but can be estimated

o Let f(r) = || X, — Y| »/||Y|l be final relative error with a
rank r factorization X

e Pick the r at the maximum curvature (Satopaa et al. 2011)

0.30 p

B

0.25p

e

)

S

o
.

final loss

0.10p

o
—
ot
curvature of final loss
—

0.05p

o

34

Multi-Scaled Decomposition

Optimize over multiple scales for faster convergence.

0.0025 -

—@—single scale
| —@— multi scale

0.0020 |

0.0015 -

0.0010 [

median time (ms)
5O

0.0005 |-

0.0000 |,

23 24 25 26 27 28 29 210 211 212
problem size (number of points)

Figure 13: (Left) Optimize over cheaper, coarse discretization with fewer points and refine.
(Right) Performance scales better with problem size [].

35

Conclusion

e Real world data is often a mixture of individual sources
e Want to separate these sources for analysis, denoising, etc.
e Looked at two techniques when you have limited data
1. Single Source Separation via Sparse Feature Decomposition

2. Multiple Mixture Separation via Tensor Factorization

36

Contact & References

Website: hitps://njericha.github.io
Email: njericha@math.ubc.ca

[1]
2]

N. J. E. Richardson, “A Sparse Random Feature Model for Signal Decomposition,”
Master’s thesis, University of Waterloo, 2022.

N. Richardson, H. Schaeffer, and G. Tran, “SRMD: Sparse Random Mode
Decomposition,” Communications on Applied Mathematics and Computation, Jun.
2023.

N. Graham, N. Richardson, M. P. Friedlander, and J. Saylor, “ITracing Sedimentary
Origins in Multivariate Geochronology via Constrained Tensor Factorization,”
Mathematical Geosciences, Feb. 2025.

N. Richardson, N. Marusenko, and M. P. Friedlander, “BlockTensorFactorization.jl,”
GitHub. https://github.com/MPF-Optimization-
Laboratory/BlockTensorFactorization.jl; GitHub, 2025.

N. J. E. Richardson, N. Marusenko, and M. P. Friedlander, “Multiple Scale Methods
For Optimization Of Discretized Continuous Functions.” arXiv, Dec. 2025.

37

https://njericha.github.io/
mailto:njericha@math.ubc.ca
https://uwspace.uwaterloo.ca/handle/10012/18262
https://doi.org/10.1007/s42967-023-00273-x
https://doi.org/10.1007/s42967-023-00273-x
https://doi.org/10.1007/s11004-024-10175-0
https://doi.org/10.1007/s11004-024-10175-0
https://github.com/MPF-Optimization-Laboratory/BlockTensorFactorization.jl
https://github.com/MPF-Optimization-Laboratory/BlockTensorFactorization.jl
https://github.com/MPF-Optimization-Laboratory/BlockTensorFactorization.jl
https://doi.org/10.48550/arXiv.2512.13993
https://doi.org/10.48550/arXiv.2512.13993

Extra slides

Under the hood: SPGL1

= @
1
200 — : Pareto curve
o 1 - @ = Solution path
) 1
kS ?
@ 150 — !
\'6 ~~~~~~~
g ‘‘‘‘‘
% 100 -
)
3
50—
0
0 0.5 1 1.5 2

one-norm of solution (x1 04)

Figure 14: Spectral Projected-Gradient with L1-norm solves LASSO problems for growing
sparsity tolerances until the residual is small enough (Van Den Berg & Friedlander 2009).

min, |y —Bal|, st |ali <7

39

Compare to other methods

1.0
4 3 ?
[=} 0.5 1
= o5 ~ ™
w]]]
g 2 3 T 00 g o
2 = 1 = =
= o -0.5 -1
0
1 -1.0 -2
0 1 2 (o] 1 2 0 1 2 (o] 1 2
Time Time Time Time
8 1.0
6 2
6
[=] 0.5
2 — 4 ~ m 1
w4 [v []
N ° - 00 T 0
< <] <] <3
= z 2 = =
= -0.5 -1
[¢]
0 -1.0 -2
0 1 2 0 1 2 0 1 2 o 1 2
Time Time Time Time

True, CEEMDAN
o N IS
Mode 1
o = N w)
Mode 2
Ld s o e
o w © Ww o
Mode 3
b e N

0 1 2 (o] 1 2 0 1 2] 1 2
Time Time Time Time
4 2
4 3 1
= —)
S 2 g 2 8
E £’
= 1
0 -1
0
0 1 2 0 1 2 0 1 2 0 1 2
Time Time Time Time

True, VMD
1) ~ 'S
Mode 1
o = N w £
Mode 2
Lo e o
Mode 3
& ° -

o
-
[N)
o
i
[N)
o
-
N
o
-
[N)

Time Time Time Time

Figure 15: Alternate methods are less robust than SRMD.

40

Block-Lipschitz Constant

1
afl_i_rl < PCn,r (a'%ﬂ“ L%r Vf7€7r (a’%a”')) y

where
f}i,r(a) — %H[B, A’i“, .. .,Af;ill,Afw(a),Ale, .
and

1 T T 1

Al (a) = af;ﬁl a’f;,rrl—l a a’fz,r+1
o Lo

41

Block-Lipschitz Constant

A P (Ag _v fg(Ag)(ﬁi)—l) |

where
Fila) = (B AL, ... AL AL AL,
and
" 4 o1
Ai = | af | az,r_l A afz,rﬂ
ol I

A .

42

Momentum

Before a gradient step, we move A further in the direction of
travel

A At 4wt (AL — AL
= Al (idg, + wh) — AW

where the amount of momentum 1s determined by

wn%mm(o 5\/At : At) 1).

43

Examples of Constraints

struct GenericConstraint <: AbstractConstraint
apply: :Function
input a AbstractArray -> mutate it so that “check™ would return true
check: :Function

end

function (C::GenericConstraint)(D: :AbstractArray)
(C.apply)(D)

end

check(C: :GenericConstraint, A::AbstractArray) = (C.check)(A)

12scale 1slices! = ScaledNormalization(l2norm;
whats normalized=(x -> eachslice(x; dims=1)))

llnormalize rows! = ProjectedNormalization(llnorm, llproject!;
whats normalized=eachrow)

nonnegative! = Entrywise(RelLU, isnonnegative)

IntervalConstraint(a, b) = Entrywise(x -> clamp(x, a, b), x -> a <= X <= b)

44

http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print

Randomizing the order of updates

BlockedUpdate(
MomentumUpdate(@, lipschitz, combine)
GradientDescent(@, gradient, LipschitzStep)
Projection(@, Entrywise(RelLU, isnonnegative))
MomentumUpdate(1l, lipschitz, combine)
GradientDescent(1l, gradient, LipschitzStep)
Projection(l, Entrywise(ReLU, isnonnegative))

)

Include the boolean options;

e group by factor: Groups updates on the same factor together
e random_order: Updates in a new random order each iteration

e recursive_random order: Inner grouped updates performed
in a random order (recursively)

45

http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print

Rescaling trick

If you have simplex constraints

eAdcA, =1

e Be A =

J;
r N 7/

IXR
Ac R

SF Afi,] = 1, vz'}
A &€ REXJXK‘Z£{:1 B[T,j, k] — 17 Vraj}

Updates look like: K

« AT = Py, (A" — - Val(A',BY)) — I &
+ B' = P5,(B' — 2 VB{(A",BY)) L e

——

N

7 R~

46

Rescaling trick

e Relax simplex constraintsto A > 0, B > 0
e and % D & Brie = Lforall v (vs), Byj, = 1 forall r, j)

Updates now look like:

At—|-1/2 (At . _Av K(At Bt))

« B2 = (B' — 2 Vg((A"/? BY)),
o Bt—‘,—l _ C—lBt—|—1/2 and At—|—1 _ At—l—l/ZC
e where C,, = = 2 it Brit

47

Rescaling vs simplex projection

o Compare stationary condition: dist (0, 0(£ + d>¢)(A,B)) at
every iteration for different constraint methods

10

objective

105

1 1 1 1
0 2500 5000 7500 10000
iteration

