
Unsupervised Signal Demixing
Optimization and Applications

20 Jan 2026 | Burnaby, BC

Nicholas Richardson
Department of Mathematics

1

About Me
BMath & MMath at the
University of Waterloo (2020 & 2022)

PhD Candidate supervised by
Michael P. Friedlander at UBC

Research in Optimization, Signal
Processing, Tensor Factorization

Fun fact: I sing & beatbox with
The Northwest Collective!

Website: https://njericha.github.io

2

https://njericha.github.io/

Overview

The unmixing problem

Applications like geology, biology, and music

Example method one: sparse random features

Example method two: constrained tensor factorization

3

The Problem

4

I’m getting mixed signals…
Many real world applications involve mixtures of data

Songs are mixtures of
different instruments

Gene counts are
influenced by cell types

Rocks are mixtures of
mineral sources

5

What do we want?
Goal: Given data without labeled examples, determine the
underlying sources.
Why? For IDing sources, pre-processing, de-noising

6

Setting 1: Single Signal Separation

Unmix a signal into sources for :

Ill-defined without assumptions on what should look like.

Should they be sparse?

Low rank (if signal is a matrix)?

Fit a particular pattern?

y ∈ R
n ∈sr R

n r = 1, … , R

y = + + ⋯ +s1 s2 sR

sr

7

Setting 2: Multiple Mixtures
Unmix into a small number of unknown sources with
unknown weights :

Each source is broken up into the product .
Ok if you have multiple mixtures of the same sources.

{ }yi { }br

{ }air

y1

yI

= + + ⋯ +a11b1 a12b2 a1RbR

⋮
= + + ⋯ + .aI1b1 aI2b2 aIRbR

sir airbr

8

If I had all the data in the world…
Train a deep neural network on known
pairs of mixtures and sources

Highly specialized to the specific task (e.g. music, images)

Takes time, energy, and lots of data to train the model

Zoo of architectures (e.g convolutional, LSTMs, transformers)

Figure 1: Example “U-net” NN for voice/instrument separation [].

f(y; θ) = (, … ,)s1 sR

y (, … ,)s1 sR

Richardson 2022

9

Solution 1: Sparse
Feature Decomposition

10

Back to Single Signal Separation
Assume the sources are some multiple of elements from a
“basis” , and is small. Then,

Different conditions on mean:

sr br

B R

y = ∑
r=1

R

arbr

a

∈ R ⟹ y ∈ span(B) ∙ ≥ 0 ⟹ y ∈ cone(B)ar ar

= 1 ⟹ y ∈ aff(B)∑r ar

≥ 0 and = 1 ⟹ y ∈ conv(B)ar ∑r ar

11

An optimization problem

In practice there might be noise, so we would like to minimize
the error between the data and our model:

Can add the previously mentioned conditions on as needed.

y

y − .min
ar

∥

∥
∥
∥ ∑

r=1

R

arbr

∥

∥
∥
∥

ar

12

Sparse Random Mode Decomposition
Assume sources are intrinsic mode
functions

Varying amplitude and
frequency

Look like curves on a time-
frequency graph

Two step process []

1. Write your signal as a sparse sum of a wavelet-like features

2. Cluster nearby features into sources

(t) = (t) sin((t))sr ar ϕr

(t)ar

(t) = (t)ωr ϕ′
r

Richardson et al. 2023

13

Part one: Representation

(t) = sin(2π t +).bj e−(t− /2τj)

Figure 2: Representing a signal sparsely in time-frequency localized features with SRMD.

Each dot (τj, ω j) corresponds to one feature bj (t) where

2
w2

ωj ϕj

14

Part one: Representation Details
Generate many random features

Express as the sum of as few “basis” elements as possible

Ensure the model and data remain close

 where .

Time-shifts , frequencies , and phases are random

Solve using SPGL1 (Van Den Berg & Friedlander 2009)

bj

y

 ∥a s.t ≤ ϵ .min
a

∥1 ∥y − Ba∥2 ∥y∥2

= ()Bi,r bj ti (t) = sin(2π t +)bj e−(t− /2τj)
2

w2
ωj ϕj

τj ωj ϕj

15

Part two: Clustering

Density Based Spatial Clustering of Applications with Noise
DBSCAN (Ester et al. 1996)

Recursively groups points within a given neighbourhood

16

Part two: Clustering Details

Collect non-zero coefficients

Partition into clusters

Use DBSCAN (Ester et al. 1996)

Groups points that are close together

Reconstruct one source per cluster

 where

C = {(,) | ≠ 0}τj ωj aj

C { }Cr

(,)τj ωj

=sr ∑
j∈Jr

ajbj = {j | (,) ∈ }Jr τj ωj Cr

17

Synthetic Numerical Example

Figure 3: Flowchart of SRMD on the sum of the sources:
, ,(t) = πt (t)s1 1[0,5/4) (t) = cos(40πt) (t)s2 1[0,5/4)

(t) = cos(((2πt − 10 − (2π − 10)+ 20π(t − 1)) (t)s3
4
3)3)3 1(1,2]

18

Fails for complicated songs…

19

Solution 2: Constrained
Tensor Decomposition

20

Setting 2: Multiple Mixtures

If the first setting was a single recording of a band,

This example would be like setting up 10 microphones in
different locations

Major Advantage: No assumptions on the types of sources!

Only need each mixture be a combination of the same sources

21

Setting 2: Multiple Mixtures

Package data into a tensor by sampling the mixtures or
stacking the observations

Figure 4: Example data tensor and it’s decomposition into and .

y1

yI

= + + ⋯ +a11b1 a12b2 a1RbR

⋮
= + + ⋯ +aI1b1 aI2b2 aIRbR

Y { }yi

Y A B

22

Model: Tucker-1 Tensor Factorization
Factorize into a mixing matrix times a source tensor
using the Tucker-1 model (Kolda and Bader 2009)

 with the entry-wise equation

Figure 5: Example data tensor and it’s decomposition into and .

Y A B

Y = B A×1

Y[i, , … ,] = A[i, r] ⋅ B[r, , … ,]j1 jN ∑R
r=1 j1 jN

Y A B

23

Application: Sediment Analysis

Figure 6: Input data tensor . Each depth fibre is a discretized probability density
for a different geological feature. We decompose with [].

Y Y[i, j, :]
Graham et al. 2025

24

Application: Sediment Analysis

Figure 7: Decomposition of the input tensor into mixing coefficients and source
distributions .

Y A

B

25

Application: Sediment Analysis

discretization index k

(source 1)

p
ro

b
ab

il
it

y

discretization index k

(source 3)

grain

sample
discretization index k

(source 2)

Figure 8: Three learned density sources. Example grain sample highlighted in green ovals.

Estimate probability grain came from source :

 is the box that contains the measured grain

Label based on the most likely probability

Assign

g r

= P(g ∈ ∣ g ∼) ≈ B[r, j,]pr Vg Br ∏J
j=1 k̂j

= [,] × ⋯ × [,]Vg x1k̂1
x1(+1)k̂1

x
Jk̂J

x
J(+1)k̂J

=r̂ argmaxrpr

confidence score = (/)log10 p(1) p(2)

26

Application: Spatial Transcriptomics

Figure 9: Spatial transcriptomics factorization model. Spatial distribution of many genes can
be decomposed into few cell types. We uncover the gene expression and spatial distribution

of these cell types, and can label distinct regions accordingly.

27

Application: Spatial Transcriptomics

Figure 10: Learn cell types and their spatial presence (heatmaps) matched with known cell
types (Branchial Arch, Brain, Heart, and Cavity).

28

Application: Musical Instrument
Separation

Figure 11: Audio source separation model. The short-time Fourier transform of a mixture can
be separated into harmonically distinct notes. These can be grouped by their spectral

similarity to recover instrument sources.

29

Application: Musical Instrument
Separation

Figure 12: (Top) Cross-correlation matrix between notes’ frequencies before and after
threshold. (Bottom) Separated guitar and flute spectrograms.

30

Computing Tensor
Factorizations

31

Constrained Optimization

Minimize the error between the model and the data :

Implementation in Julia []:

B A×1 Y

ℓ(A, B) s.t A ∈ , B ∈ .min
A,B

CA CB

Richardson et al. 2025
using BlockTensorFactorization1
Y = load_data()2

3
options = (rank=3, model=Tucker1, objective=L2(), constraints=nonnegative!)4
decomposition, stats, kwargs = factorize(Y; options...)5

6
(B, A) = factors(decomposition)7

32

http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print

Algorithm:
Block Projected Gradient Descent
Cyclically update factors with descent updates (Xu et al. 2023)

Converges to a block-wise minimum and stationary point:

At+1 = (− α ℓ(,)) .PCA
At ∇A At Bt

ℓ(,) ≤ {ℓ(, B), ℓ(A,)} .A∗ B∗ min
A∈ ,B∈CA CB

A∗ B∗

33

Estimating Rank
Usually needs to be known in advance, but can be estimated

Let be final relative error with a
rank factorization

Pick the at the maximum curvature (Satopaa et al. 2011)

R

f(r) = /∥ − Y∥X∗
r F ∥Y∥F

r X∗
r

r

34

Multi-Scaled Decomposition
Optimize over multiple scales for faster convergence.

Figure 13: (Left) Optimize over cheaper, coarse discretization with fewer points and refine.
(Right) Performance scales better with problem size [Richardson et al. 2025].

35

Conclusion

Real world data is often a mixture of individual sources

Want to separate these sources for analysis, denoising, etc.

Looked at two techniques when you have limited data

1. Single Source Separation via Sparse Feature Decomposition

2. Multiple Mixture Separation via Tensor Factorization

36

[1]

[2]

[3]

[4]

[5]

Contact & References
Website:
Email:

N. J. E. Richardson, “ ,”
Master’s thesis, University of Waterloo, 2022.
N. Richardson, H. Schaeffer, and G. Tran, “

,” Communications on Applied Mathematics and Computation, Jun.
2023.
N. Graham, N. Richardson, M. P. Friedlander, and J. Saylor, “

,”
Mathematical Geosciences, Feb. 2025.
N. Richardson, N. Marusenko, and M. P. Friedlander, “ ,”
GitHub.

; GitHub, 2025.
N. J. E. Richardson, N. Marusenko, and M. P. Friedlander, “

.” arXiv, Dec. 2025.

https://njericha.github.io
njericha@math.ubc.ca

A Sparse Random Feature Model for Signal Decomposition

SRMD: Sparse Random Mode
Decomposition

Tracing Sedimentary
Origins in Multivariate Geochronology via Constrained Tensor Factorization

BlockTensorFactorization.jl
https://github.com/MPF-Optimization-

Laboratory/BlockTensorFactorization.jl
Multiple Scale Methods

For Optimization Of Discretized Continuous Functions

37

https://njericha.github.io/
mailto:njericha@math.ubc.ca
https://uwspace.uwaterloo.ca/handle/10012/18262
https://doi.org/10.1007/s42967-023-00273-x
https://doi.org/10.1007/s42967-023-00273-x
https://doi.org/10.1007/s11004-024-10175-0
https://doi.org/10.1007/s11004-024-10175-0
https://github.com/MPF-Optimization-Laboratory/BlockTensorFactorization.jl
https://github.com/MPF-Optimization-Laboratory/BlockTensorFactorization.jl
https://github.com/MPF-Optimization-Laboratory/BlockTensorFactorization.jl
https://doi.org/10.48550/arXiv.2512.13993
https://doi.org/10.48550/arXiv.2512.13993

Extra slides

38

Under the hood: SPGL1

Figure 14: Spectral Projected-Gradient with L1-norm solves LASSO problems for growing
sparsity tolerances until the residual is small enough (Van Den Berg & Friedlander 2009).

 s.t ∥a ≤ τmina ∥y − Ba∥2 ∥1

39

Compare to other methods

Figure 15: Alternate methods are less robust than SRMD.
40

Block-Lipschitz Constant

where

and

← (− ∇ ()) ,at+1
n,r PCn,r at

n,r
1

Lt
n,r

f t
n,r at

n,r

(a) =f t
n,r

1
2 [B; , … , , (a), , … ,] − Y∥∥ At+1

1 At+1
n−1 At

n,r At
n+1 At

N
∥∥

2

F

(a) = .At
n,r

⎡

⎣
⎢

↑

at+1
n,1

↓

⋯

↑

at+1
n,r−1

↓

↑

a

↓

↑

at
n,r+1

↓

⋯

↑

at
n,Rn

↓

⎤

⎦
⎥

41

Block-Lipschitz Constant

where

and

← (− ∇ ()() ,At+1
n PCn

At
n f t

n At
n L̂

t

n)−1

(a) =f t
n

1
2 [B; , … , , , , … ,] − Y∥∥ At+1

1 At+1
n−1 At

n At
n+1 At

N
∥∥

2

F

= .Â
t

n

⎡

⎣
⎢

↑
at

n,1

↓

⋯
↑

at
n,r−1

↓

↑
at

n,r

↓

↑
at

n,r+1

↓

⋯
↑

at
n,Rn

↓

⎤

⎦
⎥

42

Momentum
Before a gradient step, we move further in the direction of
travel

where the amount of momentum is determined by

A

←Â
t

n + (−)At
n ωt

n At
n At−1

n

= (+) −At
n idRn

ωt
n At−1

n ωt
n

← min(, δ) .ωt
n ω̂t (L̂

t−1
n L̂

t

n)−1
− −−−−−−−−

√

43

Examples of Constraints
struct GenericConstraint <: AbstractConstraint1
 apply::Function2
 # input a AbstractArray -> mutate it so that `check` would return true3
 check::Function4
end5

6
function (C::GenericConstraint)(D::AbstractArray)7
 (C.apply)(D)8
end9

10
check(C::GenericConstraint, A::AbstractArray) = (C.check)(A)11

l2scale_1slices! = ScaledNormalization(l2norm;1
 whats_normalized=(x -> eachslice(x; dims=1)))2

3
l1normalize_rows! = ProjectedNormalization(l1norm, l1project!;4
 whats_normalized=eachrow)5

6
nonnegative! = Entrywise(ReLU, isnonnegative)7

8
IntervalConstraint(a, b) = Entrywise(x -> clamp(x, a, b), x -> a <= x <= b)9

44

http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print

Randomizing the order of updates

Include the boolean options;

group_by_factor: Groups updates on the same factor together

random_order: Updates in a new random order each iteration

recursive_random_order: Inner grouped updates performed
in a random order (recursively)

BlockedUpdate(1
 MomentumUpdate(0, lipschitz, combine)2
 GradientDescent(0, gradient, LipschitzStep)3
 Projection(0, Entrywise(ReLU, isnonnegative))4
 MomentumUpdate(1, lipschitz, combine)5
 GradientDescent(1, gradient, LipschitzStep)6
 Projection(1, Entrywise(ReLU, isnonnegative))7
)8

45

http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print
http://localhost:6828/?view=print

Rescaling trick
If you have simplex constraints

Updates look like:

A ∈ = {A ∈ A[i, r] = 1, ∀i}ΔA R
I×R
+

∣∣∑
R
r=1

B ∈ = {A ∈ B[r, j, k] = 1, ∀r, j}ΔB R
R×J×K
+

∣∣∑
K
k=1

= (− ℓ(,))At+1 PΔA
At 1

LA
∇A At Bt

= (− ℓ(,))Bt PΔA
Bt 1

LB
∇B At+1 Bt

46

Rescaling trick
Relax simplex constraints to ,

and for all (vs for all)

Updates now look like:

 and

where

A ≥ 0 B ≥ 0

= 11
J
∑jk Brjk r = 1∑k Brjk r, j

= (− ℓ(,)At+1/2 At 1
LA

∇A At Bt)+

= (− ℓ(,)Bt+1/2 Bt 1
LB

∇B At+1/2 Bt)+

=Bt+1 C−1Bt+1/2 = CAt+1 At+1/2

=Crr
1
J
∑jk Brjk

47

Rescaling vs simplex projection
Compare stationary condition: at
every iteration for different constraint methods

dist (0, ∂(ℓ +)(A, B))δ≥0

48

