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Overview

The unmixing problem

Applications like geology, biology, and music

Example method one: sparse random features

Example method two: constrained tensor factorization
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The Problem
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I’m getting mixed signals…
Many real world applications involve mixtures of data

Songs are mixtures of 
different instruments

Gene counts are 
influenced by cell types

Rocks are mixtures of 
mineral sources
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What do we want?
Goal: Given data without labeled examples, determine the
underlying sources.
Why? For IDing sources, pre-processing, de-noising
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Setting 1: Single Signal Separation

Unmix a signal  into sources  for :

Ill-defined without assumptions on what  should look like.

Should they be sparse?

Low rank (if signal is a matrix)?

Fit a particular pattern?

y ∈ R
n ∈sr R

n r = 1, … , R

y = + + ⋯ +s1 s2 sR

sr
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Setting 2: Multiple Mixtures
Unmix  into a small number of unknown sources  with
unknown weights :

Each source  is broken up into the product .
Ok if you have multiple mixtures of the same sources.

{ }yi { }br

{ }air

y1

yI

= + + ⋯ +a11b1 a12b2 a1RbR

⋮
= + + ⋯ + .aI1b1 aI2b2 aIRbR

sir airbr
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If I had all the data in the world…
Train a deep neural network  on known
pairs of mixtures  and sources 

Highly specialized to the specific task (e.g. music, images)

Takes time, energy, and lots of data to train the model

Zoo of architectures (e.g convolutional, LSTMs, transformers)

Figure 1: Example “U-net” NN for voice/instrument separation [ ].

f(y; θ) = ( , … , )s1 sR

y ( , … , )s1 sR

Richardson 2022
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Solution 1: Sparse
Feature Decomposition
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Back to Single Signal Separation
Assume the sources  are some multiple of elements  from a
“basis” , and  is small. Then,

Different conditions on  mean:

sr br

B R

y = ∑
r=1

R

arbr

a

∈ R ⟹ y ∈ span(B) ∙   ≥ 0 ⟹ y ∈ cone(B)ar ar

= 1 ⟹ y ∈ aff(B)∑r ar

≥ 0 and  = 1 ⟹ y ∈ conv(B)ar ∑r ar
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An optimization problem

In practice there might be noise, so we would like to minimize
the error between the data  and our model:

Can add the previously mentioned conditions on  as needed.

y

y − .min
ar

∥

∥
∥
∥ ∑

r=1

R

arbr

∥

∥
∥
∥

ar
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Sparse Random Mode Decomposition
Assume sources are intrinsic mode
functions 

Varying amplitude  and
frequency 

Look like curves on a time-
frequency graph

Two step process [ ]

1. Write your signal as a sparse sum of a wavelet-like features

2. Cluster nearby features into sources

(t) = (t) sin( (t))sr ar ϕr

(t)ar

(t) = (t)ωr ϕ′
r

Richardson et al. 2023
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Part one: Representation

(t) = sin(2π t + ).bj e−(t− /2τj)

Figure 2: Representing a signal sparsely in time-frequency localized features with SRMD. 

Each dot (τj, ω j  ) corresponds to one feature bj (t) where

2 
w2

ωj ϕj
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Part one: Representation Details
Generate many random features 

Express  as the sum of as few “basis” elements as possible

Ensure the model and data remain close

 where .

Time-shifts , frequencies , and phases  are random

Solve using SPGL1 (Van Den Berg & Friedlander 2009)

bj

y

 ∥a s.t   ≤ ϵ .min
a

∥1 ∥y − Ba∥2 ∥y∥2

= ( )Bi,r bj ti (t) = sin(2π t + )bj e−(t− /2τj)
2

w2
ωj ϕj

τj ωj ϕj
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Part two: Clustering

Density Based Spatial Clustering of Applications with Noise
DBSCAN (Ester et al. 1996)

Recursively groups points within a given neighbourhood
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Part two: Clustering Details

Collect non-zero coefficients 

Partition  into clusters 

Use DBSCAN (Ester et al. 1996)

Groups points  that are close together

Reconstruct one source per cluster

 where 

C = {( , ) |  ≠ 0}τj ωj aj

C { }Cr

( , )τj ωj

=sr ∑
j∈Jr

ajbj = {j | ( , ) ∈ }Jr τj ωj Cr
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Synthetic Numerical Example

Figure 3: Flowchart of SRMD on the sum of the sources:
, ,(t) = πt (t)s1 1[0,5/4)     (t) = cos(40πt) (t)s2 1[0,5/4)

(t) = cos( ((2πt − 10 − (2π − 10 )+ 20π(t − 1)) (t)s3
4
3 )3 )3 1(1,2]
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Fails for complicated songs…
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Solution 2: Constrained
Tensor Decomposition
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Setting 2: Multiple Mixtures

If the first setting was a single recording of a band,

This example would be like setting up 10 microphones in
different locations

Major Advantage: No assumptions on the types of sources!

Only need each mixture be a combination of the same sources
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Setting 2: Multiple Mixtures

Package data into a tensor  by sampling the mixtures  or
stacking the observations

Figure 4: Example data tensor  and it’s decomposition into  and .

y1

yI

= + + ⋯ +a11b1 a12b2 a1RbR

⋮
= + + ⋯ +aI1b1 aI2b2 aIRbR

Y { }yi

Y A B
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Model: Tucker-1 Tensor Factorization
Factorize  into a mixing matrix  times a source tensor 
using the Tucker-1 model (Kolda and Bader 2009)

 with the entry-wise equation

Figure 5: Example data tensor  and it’s decomposition into  and .

Y A B

Y = B A×1

Y[i, , … , ] = A[i, r] ⋅ B[r, , … , ]j1 jN ∑R
r=1 j1 jN

Y A B
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Application: Sediment Analysis

Figure 6: Input data tensor . Each depth fibre  is a discretized probability density
for a different geological feature. We decompose with [ ].

Y Y[i, j, :]
Graham et al. 2025
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Application: Sediment Analysis

Figure 7: Decomposition of the input tensor  into mixing coefficients  and source
distributions .

Y A

B
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Application: Sediment Analysis

discretization index k

(source 1)

p
ro

b
ab

il
it

y

discretization index k

(source 3)

grain

sample
discretization index k

(source 2)

Figure 8: Three learned density sources. Example grain sample highlighted in green ovals.

Estimate probability grain  came from source :

 is the box that contains the measured grain

Label based on the most likely probability 

Assign 

g r

= P(g ∈ ∣ g ∼ ) ≈ B[r, j, ]pr Vg Br ∏J
j=1 k̂j

= [ , ] × ⋯ × [ , ]Vg x1k̂1
x1( +1)k̂1

x
Jk̂J

x
J( +1)k̂J

=r̂ argmaxrpr

confidence score = ( / )log10 p(1) p(2)
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Application: Spatial Transcriptomics

Figure 9: Spatial transcriptomics factorization model. Spatial distribution of many genes can
be decomposed into few cell types. We uncover the gene expression and spatial distribution

of these cell types, and can label distinct regions accordingly.
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Application: Spatial Transcriptomics

Figure 10: Learn cell types and their spatial presence (heatmaps) matched with known cell
types (Branchial Arch, Brain, Heart, and Cavity).
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Application: Musical Instrument
Separation

Figure 11: Audio source separation model. The short-time Fourier transform of a mixture can
be separated into harmonically distinct notes. These can be grouped by their spectral

similarity to recover instrument sources.
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Application: Musical Instrument
Separation

Figure 12: (Top) Cross-correlation matrix between notes’ frequencies before and after
threshold. (Bottom) Separated guitar and flute spectrograms.
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Computing Tensor
Factorizations
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Constrained Optimization

Minimize the error between the model  and the data :

Implementation in Julia [ ]:

B A×1 Y

ℓ(A, B) s.t A ∈ ,  B ∈ .min
A,B

CA CB

Richardson et al. 2025
using BlockTensorFactorization1
Y = load_data()2

3
options = (rank=3, model=Tucker1, objective=L2(), constraints=nonnegative!)4
decomposition, stats, kwargs = factorize(Y; options...)5

6
(B, A) = factors(decomposition)7
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Algorithm:
Block Projected Gradient Descent
Cyclically update factors with descent updates (Xu et al. 2023)

Converges to a block-wise minimum and stationary point:

At+1 = ( − α ℓ( , )) .PCA
At ∇A At Bt

ℓ( , ) ≤ {ℓ( , B), ℓ(A, )} .A∗ B∗ min
A∈ ,B∈CA CB

A∗ B∗
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Estimating Rank
Usually  needs to be known in advance, but can be estimated

Let  be final relative error with a
rank  factorization 

Pick the  at the maximum curvature (Satopaa et al. 2011)

R

f(r) = /∥ − Y∥X∗
r F ∥Y∥F

r X∗
r

r
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Multi-Scaled Decomposition
Optimize over multiple scales for faster convergence.

Figure 13: (Left) Optimize over cheaper, coarse discretization with fewer points and refine.
(Right) Performance scales better with problem size [Richardson et al. 2025].
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Conclusion

Real world data is often a mixture of individual sources

Want to separate these sources for analysis, denoising, etc.

Looked at two techniques when you have limited data

1. Single Source Separation via Sparse Feature Decomposition

2. Multiple Mixture Separation via Tensor Factorization
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Extra slides
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Under the hood: SPGL1

Figure 14: Spectral Projected-Gradient with L1-norm solves LASSO problems for growing
sparsity tolerances until the residual is small enough (Van Den Berg & Friedlander 2009).

  s.t  ∥a ≤ τmina ∥y − Ba∥2 ∥1
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Compare to other methods

Figure 15: Alternate methods are less robust than SRMD.
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Block-Lipschitz Constant

where

and

← ( − ∇ ( )) ,at+1
n,r PCn,r at

n,r
1

Lt
n,r

f t
n,r at

n,r

(a) =f t
n,r

1
2 [B; , … , , (a), , … , ] − Y∥∥ At+1

1 At+1
n−1 At

n,r At
n+1 At

N
∥∥

2

F

(a) = .At
n,r

⎡

⎣
⎢

↑

at+1
n,1

↓

⋯

↑

at+1
n,r−1

↓

↑

a

↓

↑

at
n,r+1

↓

⋯

↑

at
n,Rn

↓

⎤

⎦
⎥
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Block-Lipschitz Constant

where

and

← ( − ∇ ( )( ) ,At+1
n PCn

At
n f t

n At
n L̂

t

n)−1

(a) =f t
n

1
2 [B; , … , , , , … , ] − Y∥∥ At+1

1 At+1
n−1 At

n At
n+1 At

N
∥∥

2

F

= .Â
t

n

⎡

⎣
⎢

↑
at

n,1

↓

⋯
↑

at
n,r−1

↓

↑
at

n,r

↓

↑
at

n,r+1

↓

⋯
↑

at
n,Rn

↓

⎤

⎦
⎥
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Momentum
Before a gradient step, we move  further in the direction of
travel

where the amount of momentum is determined by

A

←Â
t

n + ( − )At
n ωt

n At
n At−1

n

= ( + ) −At
n idRn

ωt
n At−1

n ωt
n

← min( , δ ) .ωt
n ω̂t (L̂

t−1
n L̂

t

n)−1
− −−−−−−−−

√
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Examples of Constraints
struct GenericConstraint <: AbstractConstraint1
    apply::Function2
    # input a AbstractArray -> mutate it so that `check` would return true3
    check::Function4
end5

6
function (C::GenericConstraint)(D::AbstractArray)7
    (C.apply)(D)8
end9

10
check(C::GenericConstraint, A::AbstractArray) = (C.check)(A)11

l2scale_1slices! = ScaledNormalization(l2norm;1
                   whats_normalized=(x -> eachslice(x; dims=1)))2

3
l1normalize_rows! = ProjectedNormalization(l1norm, l1project!;4
                    whats_normalized=eachrow)5

6
nonnegative! = Entrywise(ReLU, isnonnegative)7

8
IntervalConstraint(a, b) = Entrywise(x -> clamp(x, a, b), x -> a <= x <= b)9
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Randomizing the order of updates

Include the boolean options;

group_by_factor: Groups updates on the same factor together

random_order: Updates in a new random order each iteration

recursive_random_order: Inner grouped updates performed
in a random order (recursively)

BlockedUpdate(1
    MomentumUpdate(0, lipschitz, combine)2
    GradientDescent(0, gradient, LipschitzStep)3
    Projection(0, Entrywise(ReLU, isnonnegative))4
    MomentumUpdate(1, lipschitz, combine)5
    GradientDescent(1, gradient, LipschitzStep)6
    Projection(1, Entrywise(ReLU, isnonnegative))7
)8
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Rescaling trick
If you have simplex constraints

Updates look like:

A ∈ = {A ∈ A[i, r] = 1, ∀i}ΔA R
I×R
+

∣∣∑
R
r=1

B ∈ = {A ∈ B[r, j, k] = 1, ∀r, j}ΔB R
R×J×K
+

∣∣∑
K
k=1

= ( − ℓ( , ))At+1 PΔA
At 1

LA
∇A At Bt

= ( − ℓ( , ))Bt PΔA
Bt 1

LB
∇B At+1 Bt
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Rescaling trick
Relax simplex constraints to , 

and  for all  (vs  for all )

Updates now look like:

 and 

where 

A ≥ 0 B ≥ 0

= 11
J
∑jk Brjk r = 1∑k Brjk r, j

= ( − ℓ( , )At+1/2 At 1
LA

∇A At Bt )+

= ( − ℓ( , )Bt+1/2 Bt 1
LB

∇B At+1/2 Bt )+

=Bt+1 C−1Bt+1/2 = CAt+1 At+1/2

=Crr
1
J
∑jk Brjk
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Rescaling vs simplex projection
Compare stationary condition:  at
every iteration for different constraint methods

dist (0, ∂(ℓ + )(A, B))δ≥0
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