Approximate Matrix Rank

Nicholas Richardson

15 April 2024

THE UNIVERSITY OF BRITISH COLUMBIA

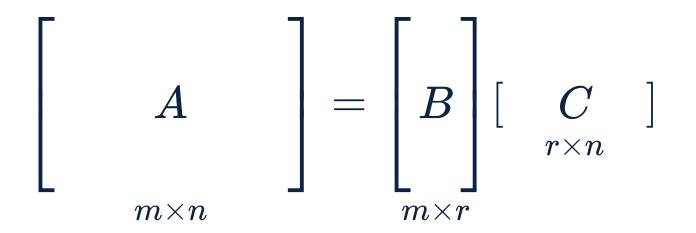
Mathematics Faculty of Science

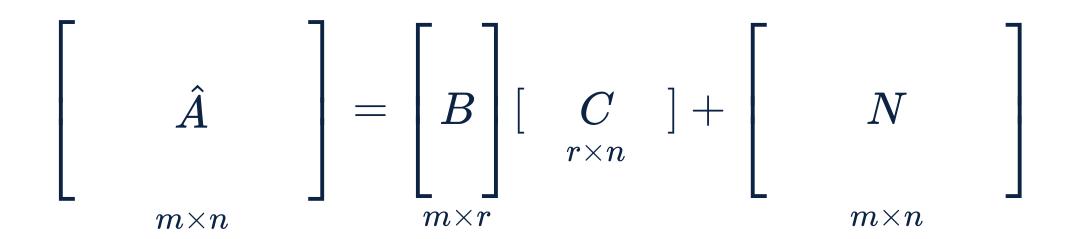
• $\operatorname{rank}(A) = #$ independent rows/colums of A

- $\operatorname{rank}(A) = #$ independent rows/colums of A
- Compute # nonzero singular values σ

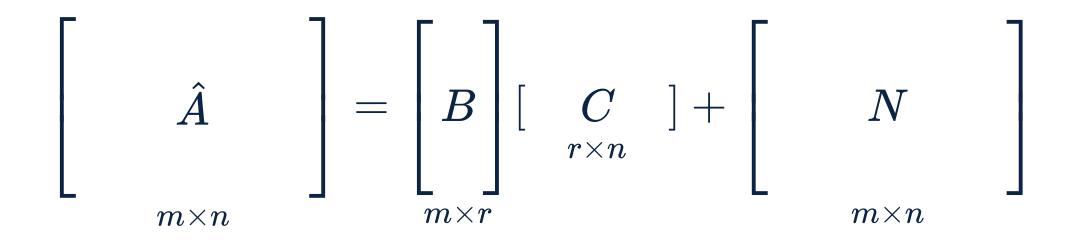
- $\operatorname{rank}(A) = #$ independent rows/colums of A
- Compute # nonzero singular values σ
- Represents the number of import components in ${\cal A}$

- $\operatorname{rank}(A) = #$ independent rows/colums of A
- Compute # nonzero singular values σ
- Represents the number of import components in ${\cal A}$
- If the rank *r* is small, can greatly compress data:

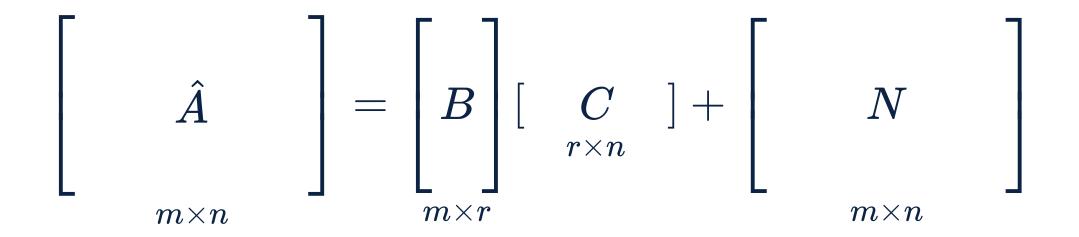




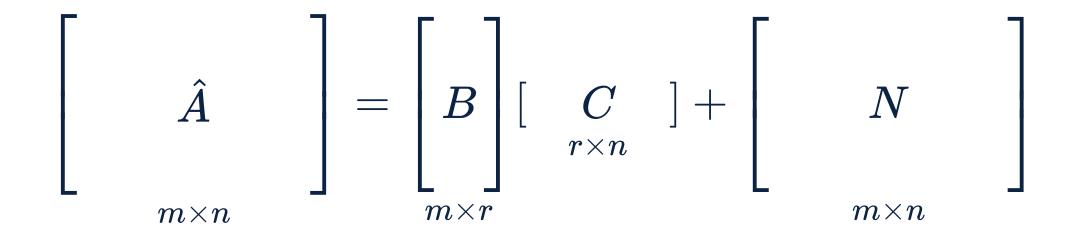
- Gaussian noise matrix ${\cal N}$ is full rank



- Gaussian noise matrix ${\cal N}$ is full rank
- The noisy data $\hat{A} = A + N$ is also full rank



- Gaussian noise matrix ${\cal N}$ is full rank
- The noisy data $\hat{A} = A + N$ is also full rank
- Don't know the number of features in your data 🙁



$$\mathrm{rank}_arepsilon(A) = \min_{\|E\| \leq arepsilon} \mathrm{rank}(A+E)$$

1. Golub, Klema, and Stewart (1977)

Approximate Matrix Rank

$$\mathrm{rank}_arepsilon(A) = \min_{\|E\| \leq arepsilon} \mathrm{rank}(A+E)$$

• Smallest rank of an ε -approximation of A

1. Golub, Klema, and Stewart (1977)

$$\mathrm{rank}_arepsilon(A) = \min_{\|E\| \leq arepsilon} \mathrm{rank}(A+E)$$

- Smallest rank of an ε -approximation of A
- Counts the # singular values *bigger* than ε

1. Golub, Klema, and Stewart (1977)

$$\mathrm{rank}_arepsilon(A) = \min_{\|E\| \leq arepsilon} \mathrm{rank}(A+E)$$

- Smallest rank of an ε -approximation of A
- Counts the # singular values *bigger* than ε
- A.K.A. numerical or approximate rank

1. Vershynin (2018)

• If $\|N\| \leq arepsilon < \sigma_r/2$,

 $\operatorname{rank}_{\varepsilon}(A+N) = \operatorname{rank}(A).$

1. Vershynin (2018)

• If
$$\|N\| \leq arepsilon < \sigma_r/2$$
,

 $\operatorname{rank}_{\varepsilon}(A+N) = \operatorname{rank}(A).$

• σ_r is the smallest nonzero singular value of A

• If
$$\|N\| \leq arepsilon < \sigma_r/2$$
,

 $\mathrm{rank}_{arepsilon}(A+N)=\mathrm{rank}(A).$

- σ_r is the smallest nonzero singular value of A
- ε needs to be between the noise level $\|N\|$ and the smallest important data (σ_r)

• If
$$\|N\| \leq arepsilon < \sigma_r/2$$
,

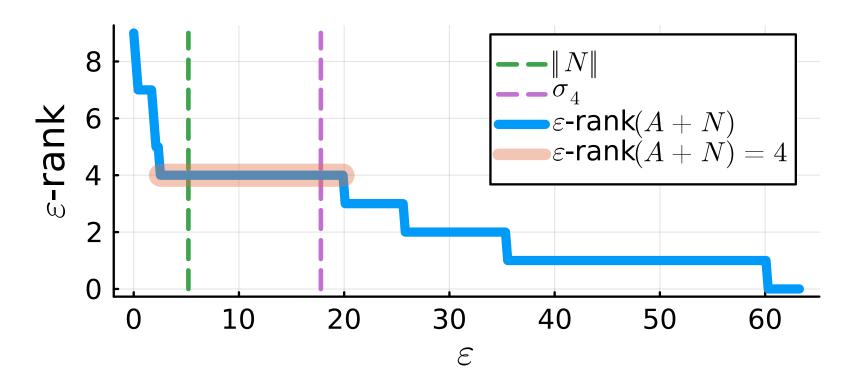
 $\operatorname{rank}_{\operatorname{\varepsilon}}(A+N)=\operatorname{rank}(A).$

- σ_r is the smallest nonzero singular value of A
- ε needs to be between the noise level ||N|| and the smallest important data (σ_r)
- Estimate standard Gaussian¹ $\|N\| \approx \sqrt{m} + \sqrt{n}$

• Generate random 9×9 rank-4 matrix A

- Generate random 9×9 rank-4 matrix A
- Add standard Gaussian noise N

- Generate random 9×9 rank-4 matrix A
- Add standard Gaussian noise ${\cal N}$



Approximate Matrix Rank

Future Work & References

Golub, Gene H., Virginia Klema, and Gilbert W. Stewart. 1977. "Rosetak Document 4: Rank Degeneracies and Least Square Problems." SSRN Scholarly Paper. Rochester, NY.

Vershynin, Roman. 2018. *High-Dimensional Probability*. Cambridge Series in Statistical and Probabilistic Mathematics. University of California, Irvine: Cambridge University Press.

Future Work & References

• How to pick the right ε ?

Golub, Gene H., Virginia Klema, and Gilbert W. Stewart. 1977. "Rosetak Document 4: Rank Degeneracies and Least Square Problems." SSRN Scholarly Paper. Rochester, NY.

Vershynin, Roman. 2018. *High-Dimensional Probability*. Cambridge Series in Statistical and Probabilistic Mathematics. University of California, Irvine: Cambridge University Press.

Future Work & References

- How to pick the right ε ?
- What if A and A + N are nonnegative?

Golub, Gene H., Virginia Klema, and Gilbert W. Stewart. 1977. "Rosetak Document 4: Rank Degeneracies and Least Square Problems." SSRN Scholarly Paper. Rochester, NY.

Vershynin, Roman. 2018. *High-Dimensional Probability*. Cambridge Series in Statistical and Probabilistic Mathematics. University of California, Irvine: Cambridge University Press.