

Non-negative Tensor Decompositions for Unsupervised Learning

Joint work w/ Naomi Graham¹, Joel Saylor², & Michael Friedlander^{1,3} 2023 SIAM PNW Conference at Western Washington University, Bellingham, WA

Nicholas Richardson³

October 14, 2023

¹UBC Computer Science ²UBC Earth, Ocean, and Atmospheric Sciences ³UBC Mathematics

THE UNIVERSITY OF BRITISH COLUMBIA

Table of Contents

► Overview

Tensor Models

Computing Tensor Decompositions

Special Considerations

Conclusion

The Setting

- Do you have a lot of data?
- A function that depends on many independent variables?
- High-dimensional samples?
- Want to compress the data?
- Or find relationships between samples/variables?

Benefits Overview

- Less storage than original data
- Interpretable results
- There exist easy to implement algorithms with convergence guarantees
- Unlike supervised learning, no "training" required
- None or only a few hyperparameters to tune

Table of Contents Tensor Models

► Overview

► Tensor Models

Computing Tensor Decompositions

Special Considerations

► Conclusion

The Data Tensor Tensor Models

Figure: Order-3 Tensor

¹Kolda and Bader 2009

• Order-N tensor¹

 $Y \in \mathbb{R}^{I_1 imes \cdots imes I_N}$

- Often consider additional constraints
 - non-negative: $Y_{i_1...i_N} \in \mathbb{R}_+$
 - probability values: $0 \leq Y_{i_1...i_N} \leq 1$
 - distributions: $1 = \sum_{j} Y_{i_1...i_N}$
 - binary: $Y_{i_1...i_N} \in \{0, 1\}$

Tucker Decomposition¹ Tensor Models

• Factorize Y into a core tensor $G \in \mathbb{R}^{R_1 imes \cdots imes R_N}$ and matrices $A^n \in \mathbb{R}^{I_n imes R_n}$

$$Y = G imes_1 A^1 imes_2 \cdots imes_N A^N$$
 $Y_{i_1...i_N} = \sum_{r_1...r_N} G_{r_1...r_N} A^1_{i_1r_1} \cdots A^N_{i_Nr_N}$

- e.g. compress 1000^3 (4 GB) to $100^3 + 3 \cdot 100 \cdot 1000$ (5.2 MB)

¹Tucker 1966

Special Cases of Tucker Decomposition Tensor Models

- Canonical polyadic decomposition¹ (CP): G = I and $R_1, \ldots, R_N = R$
- Smallest *R* is the tensor rank

$$egin{aligned} Y &= I imes_1 A^1 imes_2 \cdots imes_N A^N \ Y_{i_1 \dots i_N} &= \sum_r A^1_{i_1 r} \cdots A^N_{i_N r} \ Y_{i_N r} \ Y_{i_$$

e.g. low-rank decomp: $Y = AB^{\top}$

- Tucker- n^1 : A^{n+1} , ..., $A^N = I$ (possibly different sizes!)
 - $Y = G \times_1 A^1 \times_2 \cdots \times_n A^n$ e.g. Tucker-1/matrix-tensor factor²: $Y = G \times_1 A = AG$

¹Kolda and Bader 2009 ²Richardson, Graham, et al. n.d.

CP Decomposition Example 1 Tensor Models

- Decompose one bass line (STFT) into Fourier Transform & Amplitude Envelope¹
 - Order N = 2, rank R = 1

¹Richardson n.d.

CP Decomposition Example 2

Tensor Models

- Decompose multiple bass lines into notes & envelopes for each song¹
 - Order N = 3, rank R = 11

¹Richardson n.d.

Tucker-1 Example

- Decompose multiple sink's feature densities into linear combination of latent source densities¹
 - Order 3, rank 3

¹Richardson, Graham, et al. n.d.

Table of Contents Computing Tensor Decompositions

Overview

Tensor Models

Computing Tensor Decompositions

Special Considerations

► Conclusion

The Optimization Problem Computing Tensor Decompositions

• May try to solve the model exactly

$$Y = f(A^1, \dots, A^N)$$
 (e.g. NMF: $Y = WH$)

• With noise, or imperfect modelling, better to find "closest" fit

$$\min_{A^n\in\mathcal{C}^n}D(Y,\hat{Y})$$
 s.t. $\hat{Y}=f(A^1,\ldots,A^N)$

• Define objective function $D(\mathbf{Y}, \hat{\mathbf{Y}}) = F(A^1, \dots, A^N)$

$$\begin{array}{l} - \hspace{0.1 cm} \text{e.g. Least Squares: } \|Y - \hat{Y}\|_{F}^{2} \\ - \hspace{0.1 cm} \text{e.g. KL-Divergence: } \sum_{i_{1}...i_{N}} Y_{i_{1}...i_{N}} \log \left(\frac{Y_{i_{1}...i_{N}}}{\hat{Y}_{i_{1}...i_{N}}} \right) \end{array}$$

Problems With Naive Methods

Computing Tensor Decompositions

• (Projected) Full Gradient Descent:

$$\mathcal{A} \leftarrow \arg \min_{\mathcal{B} \in \mathcal{C}} \langle
abla F(\mathcal{A}), \mathcal{B} - \mathcal{A}
angle + rac{1}{2lpha} \|\mathcal{B} - \mathcal{A}\|_F^2$$

 $(\mathcal{A}^1, \dots, \mathcal{A}^N) \leftarrow P_{\mathcal{C}} \left((\mathcal{A}^1, \dots, \mathcal{A}^N) - lpha
abla F(\mathcal{A}^1, \dots, \mathcal{A}^N)
angle
ight)$

- Non-expensive updates, but F not convex, ∇F not Lipschitz
- Alternating Least-Squares:

$$A^n \leftarrow \arg \min_{A \in \mathcal{C}} ||Y - f(A^1, \dots, A^{n-1}, A, A^{n+1}, \dots, A^N)||_F^2$$

- f linear in A^n , but waste time fully optimizing A^n every step

Block Coordinate Descent (BCD) Algorithm²

Computing Tensor Decompositions

• Combine into BCD¹:

$$\mathbf{A}^n \leftarrow rg \min_{\mathbf{A} \in \mathcal{C}} \langle
abla_{\mathbf{A}^n} F, \mathbf{A} - \mathbf{A}^n
angle + rac{1}{2lpha} \|\mathbf{A} - \mathbf{A}^n\|_F^2$$

$$\mathbf{A}^{n} \leftarrow P_{\mathcal{C}} \left(\mathbf{A}^{n} - \alpha \nabla_{\mathbf{A}^{n}} F \right)$$

- Alternately update the factors, but don't fully optimize every iteration
- Can choose $\alpha = 1/L_n$
 - *L* is the Lipshitz constant of $\nabla F(A^1, \dots, A^{n-1}, \cdot, A^{n+1}, \dots, A^N)$

Figure: Example minimization with BCD (blue), Gradient Descent (green), Alternating Least Squares (orange)

¹Xu and Yin 2013

^{11 &}lt;sup>2</sup>https://github.com/njericha/Sediment-Source-Analysis.jl

Table of Contents Special Considerations

Overview

Tensor Models

Computing Tensor Decompositions

► Special Considerations

Conclusion

Convergence Special Considerations

• BCD converges to (global) Nash point (A^1, \ldots, A^N) :

$$A^n = rg \min_{A \in \mathcal{C}^n} F(A^1, \dots, A^{n-1}, A, A^{n+1}, \dots, A^N), \quad n = 1, \dots, N$$

• "Cannot improve objective by updating one block"

Nash point condition²

Let $F(\cdot,B),F(A,\cdot)$ be convex, and $(A_0,B_0)\in\mathcal{C}=\mathcal{C}_A imes\mathcal{C}_B.$ Then,

$$\mathbf{0} \in \partial(F + \delta_{\mathcal{C}})(A_0, B_0) \iff \begin{array}{c} F(A_0, B_0) \leq F(A, B_0) \; \forall A \in \mathcal{C}_A \\ F(A_0, B_0) \leq F(A_0, B) \; \forall B \in \mathcal{C}_B \end{array}$$

• When *F* is differentiable and *C* is convex:

$$\mathbf{0} \in \partial(F + \delta_{\mathcal{C}})(A, B) \iff -\nabla F \in N_{\mathcal{C}}(A, B)$$

¹² ¹Xu and Yin 2013 ²Richardson, Graham, et al. n.d.

Selecting the Rank Special Considerations

- Option 1: Use information about your physical system
 - e.g. decompose piano audio into notes and amplitudes
 - -R = 88 since there are 88 keys
- Option 2: compute the "best bank for your buck"¹
 - Solve the model for all ranks $r=1,\ldots,I$
 - Compute final objective value F(R)
 - Select point of maximum curvature

$$R = rg \max_{r} \kappa(r) := rac{F''(r)}{(1+F'(r)^2)^{3/2}}$$

Figure: Typical final error F(r) vs rank r plot

¹Satopaa et al. 2011

Uniqueness & Scaling

- These models are not (usually) unique
- Ex. $Y = AB^{\top} = (AC)(C^{-1}B^{\top})$ for invertable C
- Fix a scaling on factors: set $\|A^n\| = c_n$ or $\sum_j A_{..j..} = c_n$ for...

... all but one factor

 \ldots all factors & add scaling parameter λ

e.g.:
$$Y_{ij} = \sum_{r} A_{ir} B_{jr}$$
 s.t. $||B_{:r}||_2 = 1$ e.g.: $Y_{ij} = \sum_{r} \lambda_r A_{ir} B_{jr}$ s.t. $||A_{:r}||_2, ||B_{:r}||_2 = 1$

- Enforce through:
 - constraint (projection)
 - rescale at the end/each iteration
- Still only unique up to permutations of rows/columns/fibres

Table of Contents

Overview

Tensor Models

Computing Tensor Decompositions

Special Considerations

► Conclusion

Summary Conclusion

- Looked at various tensor decomposition models
- Optimization methods to solve them
- Practical considerations

Future Directions for Additional Compression

• Factorize the core symmetrically¹ (Extend Tucker)

$$Y_{ijk} = \sum_{r_1, r_2, r_3} \sum_{\substack{p,q,s=1\\p,q,s=1}}^{R} B_{r_1qs}^1 B_{pr_2s}^2 B_{pqr_3}^3 A_{ir_1}^1 A_{jr_2}^2 A_{kr_3}^3$$

• Tensor Trains² (Extend Tucker-2)

$$Y_{i_1...i_N} = \sum_{r_1, r_N} A_{i_1r_1}^1 \sum_{\substack{j_2...j_{N-2}\\p_2...j_{N-2}}} A_{r_1i_2j_2}^2 A_{j_2i_3j_3}^3 \dots A_{j_{N-2}i_{N-1}r_2}^{n-1} A_{i_Nr_N}^N$$

• Factorize the matrices (Extend CP)

$$Y_{ij} = \sum_{r} A_{ir} \underbrace{\sum_{k} T_{jrk} b_{k}}_{B_{ir}}$$

¹Qi et al. 2020 ²Oseledets 2011

References

- Kolda, Tamara G. and Brett W. Bader (Aug. 2009). "Tensor Decompositions and Applications". In: *SIAM Review* 51.3, pp. 455–500.
- Luo, Yuan, Fei Wang, and Peter Szolovits (May 2017). "Tensor Factorization toward Precision Medicine". In: *Briefings in Bioinformatics* 18.3, pp. 511–514.
- Oseledets, I. V. (Jan. 2011). "Tensor-Train Decomposition". In: SIAM Journal on Scientific Computing 33.5, pp. 2295–2317.

- Qi, Liqun et al. (Mar. 2020). Triple Decomposition and Tensor Recovery of Third Order Tensors.
- Richardson, Nicholas (n.d.). A Consistant Framework for Non-negative Tensor Models and Algorithms with Applications.
- Richardson, Nicholas, Naomi Graham, et al. (n.d.). Non-Negative Matrix-Tensor Factorization for Sediment Source Analysis.

Richardson, Nicholas, Hayden Schaeffer, and Giang Tran

¹⁷ (June 2023). "SRMD: Sparse Random Mode Decomposi-

tion". In: Communications on Applied Mathematics and Computation.

- Satopaa, Ville et al. (June 2011). "Finding a "Kneedle" in a Haystack: Detecting Knee Points in System Behavior". In: 2011 31st International Conference on Distributed Computing Systems Workshops, pp. 166–171.
- Sundell, Kurt E. et al. (2022). "Crustal Thickening of the Northern Central Andean Plateau Inferred From Trace Elements in Zircon". In: *Geophysical Research Letters* 49.3, e2021GL096443.
- Suvanjanprasai (n.d.). Sample Images from MNIST Test Dataset.
- Tucker, Ledyard R. (Sept. 1966). "Some Mathematical Notes on Three-Mode Factor Analysis". In: *Psychometrika* 31.3, pp. 279–311.
- Xu, Yangyang and Wotao Yin (Jan. 2013). "A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion". In: SIAM Journal on Imaging Sciences 6.3, pp. 1758–1789.

Thank you for listening! Any questions?