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The SettingOverview
• Do you have a lot of data?• A function that depends on many independent variables?• High-dimensional samples?• Want to compress the data?• Or find relationships between samples/variables?

Tensor Decompositions are for you!

Suvanjanprasai n.d. Sundell et al. 2022
Richardson,Schaeffer, and Tran2023 Richardson n.d. Luo, Wang, andSzolovits 20171



BenefitsOverview

• Less storage than original data
• Interpretable results
• There exist easy to implement algorithms with convergence guarantees
• Unlike supervised learning, no “training” required
• None or only a few hyperparameters to tune
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The Data TensorTensor Models
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Figure: Order-3 Tensor

• Order-N tensor1
Y ∈ RI1×···×IN

• Often consider additional constraints
— non-negative: Yi1...iN ∈ R+— probability values: 0 ≤ Yi1...iN ≤ 1— distributions: 1 =

∑
j Yi1...j...iN— binary: Yi1...iN ∈ {0, 1}

1Kolda and Bader 2009
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Tucker Decomposition1Tensor Models
• Factorize Y into a core tensor G ∈ RR1×···×RN and matrices An ∈ RIn×Rn

Y = G×1 A1 ×2 · · · ×N AN

Yi1...iN =
∑

r1...rN

Gr1...rN A1
i1r1
· · ·AN

iNrN

• e.g. compress 10003 (4 GB) to 1003 + 3 · 100 · 1000 (5.2 MB)
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Special Cases of Tucker DecompositionTensor Models
• Canonical polyadic decomposition1 (CP): G = I and R1, . . . ,RN = R• Smallest R is the tensor rank

Y = I ×1 A1 ×2 · · · ×N AN

Yi1...iN =
∑

r

A1
i1r · · ·AN

iNr

e.g. low-rank decomp: Y = AB⊤

• Tucker-n1: An+1, . . . ,AN = I (possibly different sizes!)
Y = G×1 A1 ×2 · · · ×n An

e.g. Tucker-1/matrix-tensor factor2: Y = G×1 A = AG

1Kolda and Bader 20092Richardson, Graham, et al. n.d.
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CP Decomposition Example 1Tensor Models

• Decompose one bass line (STFT) into Fourier Transform & Amplitude Envelope1
— Order N = 2, rank R = 1

1Richardson n.d.
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CP Decomposition Example 2Tensor Models
• Decompose multiple bass lines into notes & envelopes for each song1— Order N = 3, rank R = 11

1Richardson n.d.7



Tucker-1 ExampleTensor Models
• Decompose multiple sink’s feature densities into linear combination of latent sourcedensities1— Order 3, rank 3

1Richardson, Graham, et al. n.d.
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The Optimization ProblemComputing Tensor Decompositions
• May try to solve the model exactly

Y = f (A1, . . . ,AN) (e.g. NMF: Y = WH)
• With noise, or imperfect modelling, better to find “closest” fit

min
An∈Cn

D(Y, Ŷ) s.t. Ŷ = f (A1, . . . ,AN)

• Define objective function D(Y, Ŷ) = F(A1, . . . ,AN)

— e.g. Least Squares: ∥Y − Ŷ∥2
F

— e.g. KL-Divergence: ∑
i1...iN

Yi1...iN log

(
Yi1...iN

Ŷi1...iN

)
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Problems With Naive MethodsComputing Tensor Decompositions
• (Projected) Full Gradient Descent:

A ← arg min
B∈C
⟨∇F(A),B −A⟩+ 1

2α
∥B − A∥2

F

(A1, . . . ,AN)← PC
(
(A1, . . . ,AN)− α∇F(A1, . . . ,AN)

)
— Non-expensive updates, but F not convex,∇F not Lipschitz

• Alternating Least-Squares:
An ← arg min

A∈C
∥Y − f (A1, . . . ,An−1,A,An+1, . . . ,AN)∥2

F

— f linear in An, but waste time fully optimizing An every step
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Block Coordinate Descent (BCD) Algorithm2
Computing Tensor Decompositions

• Combine into BCD1:
An ← arg min

A∈C
⟨∇An F,A− An⟩+ 1

2α
∥A− An∥2

F

An ← PC (An − α∇An F)

• Alternately update the factors, but don’t fullyoptimize every iteration
• Can choose α = 1/Ln— L is the Lipshitz constant of

∇F(A1, . . . ,An−1, ·,An+1, . . . ,AN)

Figure: Example minimization with BCD(blue), Gradient Descent (green),Alternating Least Squares (orange)
1Xu and Yin 20132https://github.com/njericha/Sediment-Source-Analysis.jl11
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ConvergenceSpecial Considerations
• BCD converges to (global) Nash point1 (A1, . . . ,AN):

An = arg min
A∈Cn

F(A1, . . . ,An−1,A,An+1, . . . ,AN), n = 1, . . . ,N

• “Cannot improve objective by updating one block”
Nash point condition2

Let F(·,B), F(A, ·) be convex, and (A0,B0) ∈ C = CA × CB. Then,
0 ∈ ∂(F + δC)(A0,B0) ⇐⇒

F(A0,B0) ≤ F(A,B0) ∀A ∈ CA

F(A0,B0) ≤ F(A0,B) ∀B ∈ CB
.

• When F is differentiable and C is convex:
0 ∈ ∂(F + δC)(A,B) ⇐⇒ −∇F ∈ NC(A,B)

1Xu and Yin 2013 2Richardson, Graham, et al. n.d.12



Selecting the RankSpecial Considerations

• Option 1: Use information about your physical system
— e.g. decompose piano audio into notes and amplitudes— R = 88 since there are 88 keys

• Option 2: compute the “best bank for your buck”1
— Solve the model for all ranks r = 1, . . . , I— Compute final objective value F(R)— Select point of maximum curvature

R = arg max
r

κ(r) :=
F′′(r)

(1 + F′(r)2)3/2 Figure: Typical final error F(r)vs rank r plot
1Satopaa et al. 2011
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Uniqueness & ScalingSpecial Considerations
• These models are not (usually) unique
• Ex. Y = AB⊤ = (AC)(C−1B⊤) for invertable C

• Fix a scaling on factors: set ∥An∥ = cn or∑j A...j... = cn for. . .
. . . all but one factor

e.g.: Yij =
∑

r

AirBjr s.t. ∥B:r∥2 = 1

. . . all factors & add scaling parameter λ
e.g.:Yij =

∑
r

λrAirBjr s.t. ∥A:r∥2, ∥B:r∥2 = 1

• Enforce through:
— constraint (projection)— rescale at the end/each iteration

• Still only unique up to permutations of rows/columns/fibres
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SummaryConclusion

• Looked at various tensor decomposition models
• Optimization methods to solve them
• Practical considerations
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Future Directions for Additional CompressionConclusion
• Factorize the core symmetrically1 (Extend Tucker)

Yijk =
∑

r1,r2,r3

R∑
p,q,s=1

B1
r1qsB2

pr2sB3
pqr3︸ ︷︷ ︸

Gr1r2r3

A1
ir1

A2
jr2

A3
kr3

• Tensor Trains2 (Extend Tucker-2)
Yi1...iN =

∑
r1,rN

A1
i1r1

∑
j2...jN−2

A2
r1i2j2

A3
j2i3j3

. . .An−1
jN−2iN−1r2︸ ︷︷ ︸

Gr1 i2...iN−1rN

AN
iNrN

• Factorize the matrices (Extend CP)
Yij =

∑
r

Air

∑
k

Tjrkbk︸ ︷︷ ︸
Bjr1Qi et al. 20202Oseledets 201116
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Thank you for listening!
Any questions?
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