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Motivation & Examples



Application 1: Geology!

e Source locations have their own distribution of minerals
e Rocks from these sources are mixed & deposited downstream

e Take scoops of rocks at locations downstream, called “sinks”

SOURCES

SINKS
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Modeling the Physical Problem

e Want to “un-mix’’ the measured sink distribution

e Goal: Estimate the mixing proportions and source
distributions
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Application 2: Transcriptomics

e Perform single-cell sequencing for
multiple embryos throughout E g

Gene expression

development vectors

e Label cells (heart, brain, etc.) at
each time point

e Goal: Given gene expressions at
each cell, cluster cells that have
similar gene expressions
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Modeling the problem

e Goal: Learn gene expressions and distribution of each cell

type
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Application 3: Music Decomposition

e Rebalance or isolate instruments from a single recording
e Learn what each note sounds like (frequency spectrum)

e Goal: Separate audio mixture by frequency spectrums
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Modeling Music Decomposition

e Take short-time Fourier transform of audio recording

e Goal: Learn the frequencies and amplitudes of each note

frequency — note — frequency —
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« Jj0U
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Generic Problem
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Joint Signal Decomposition

e Given mixtures ¥,yo,-.-,¥7

e Find mixing coefficients a;; and sources by, ba,...,bpg

y; = ai1b; +ap2by + -+ airbg

Yo = ao1by + ageby + -+ 4+ asrbr

y; =apnb; +apby 4+ -+ ajprbpr
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Other Decomposition Approaches

Parametrised Basis

o Fixed basis: y = >, 5 apb
= Fourier and short-time Fourier transform (Grochenig 2001)
» Wavelets (Benedetto and Frazier 1993; Daubechies et al. 2011)
= Frame decomposition (Benedetto and Frazier 1993, Ch. 7)
= Atomic decomposition (Chen et al. 2001; Fan et al. 2022)
= Dictionary learning™ (Tosic and Frossard 2011)
e Random basis: y = ) a,b, where b, ~ B

= Random feature models b, (z) = f({(wy, z) + ¢, ), where (wy, ¢r) ~ Q2 x P
(Rahimi and Recht 2008; Hashemi et al. 2023)

= Sparse random mode decomposition (Richardson et al. 2023)
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Other Decomposition Approaches

Parametrised Basis

e Great if you know a good basis for your data!
= Data becomes sparse in your basis

= Basis elements having meaningful interpretations
(e.g. Fourier frequencies)

e Otherwise, sources b, may not be meaningful
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Other Decomposition Approaches

Data-driven

o Intrinsic Mode Functions: y = > b, where b, (t) = a,(t) sin(¢-(t))

= Empirical mode decomposition (Huang et al. 1998)

= Empirical wavelet transform (Gilles 2013)

= Variational mode decomposition (Dragomiretskiy and Zosso 2014)
e Supervised learning: learn parameters 6 so that Fy(y) = (b;),

= Convolutional neural networks (Zhu et al. 2019)

= Long short-term memory networks (Cao et al. 2019)

= Autoencoders (Karamatli et al. 2019)

e Dictionary learning (Tosic¢ and Frossard 2011)
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Other Decomposition Approaches

Data-driven

e Intrinsic Mode Functions
s Effective for frequency-amplitude modulated sources b,
e Supervised learning

o State-of-the-art

= Need lots of data with known decompositions

= Must retrain on data for each application
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Joint Signal Decomposition

e Given mixtures ¥,yo,-.-,¥7

e Find mixing coefficients a;; and sources by, ba,...,bpg

Density Separation with Tensor Factorization

18



Joint Signal Decomposition

e Given mixtures ¥,yo,-.-,¥7

e Find mixing coefficients a;; and sources by, ba,...,bpg

y; = ai1b; +apeby + -4+ aigrbg

Yo = ao1by + ageby + -+ 4+ asrbg

yr = anbi +apbs + -+ arrbg
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Joint Signal Decomposition

e Given mixtures ¥,yo,-.-,¥7

e Find mixing coefficients a;; and sources by, ba,...,bpg

Y1 aj;; a2 ... QIR by
Yo az; Q2 ... Q2R b

R arn app ... ajr] Lbr.
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Joint Signal Decomposition

e Given mixtures ¥,yo,-.-,¥7

e Find mixing coefficients a;; and sources by, bo, . ..

T T

yi
Yo

yi

Ll

a11i ai9 .« o ai1Rr
a1 a99 .« .. asRr
L arnr ar? arr |
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Our approach

Matrix and Tensor Factorization

Principle component analysis (Pearson 1901; Abdi and Williams 2010)

Independent component analysis (Comon 1994; Hyvarinen 1999)

Nonnegative matrix factorization (Cohen and Rothblum 1993; Gillis 2020)

Tensor decompositions (Kolda and Bader 2009)
Why?

= Interpretability
= Minimal assumptions on sources b,
= No training step, so less data needed

» Unsupervised learning
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Tucker-1 Decomposition

e A generalization of rank- R matrix factorization

e Y=AB Y =" A,B oY, =YY" A,B,
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Tucker-1 Decomposition

e A generalization of rank- R matrix factorization

e Y=AB Y =" A,B Y, =YY" A,B,
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Tucker-1 Decomposition

e A generalization of rank- R matrix factorization

* Y=AB V=" AyByr *Y; =" A4,B,

1-slices Y[i, :, :] rows A[i, :] 1-slices B[r, , :]
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Properties of the model
Should be low rank

e Need more mixtures y, than sources b, (I > R)
e Otherwise, there’s too many solutions for a, and b,

e For example,
y = aib; + asbs +--- +agrbp

e has the unhelpful solution a; = 1 and b; = y, where the rest
of of the coefficientsa, =0 forr=2,..., R
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Properties of the model
Should be scaled

e Need to scale coefficients a;, or sources b, (or both)
e Otherwise, decomposition 1s not unique and unbounded

e For example,

Y =AB=(cA) (iB) = (AC) (C"'B)
e for all positive ¢ > 0, or R X R invertible matrix C

e Common scales include normalizing columns/rows of A or
slices of B
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Solution Method
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First, we need our densities y;

e Often cannot measure our mixture densities y; directly
e Typical problem:
= given 1.i.d. samples s;" ~ )V; forn =1,...,N;

» cach distribution Y; 1s a convex mixture of the (the same)
source distributions Bg: Y; = a;1B1 + -+ - + a;rBgr

= estimate mixing coefficients a;, and probability density
functions b, for the distributions Bp

e In other words, “P (s ~ B,|s ~ YV;) = a;”

Density Separation with Tensor Factorization
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Density Estimation from samples

e if we knew what the sources look like...

e ...parametrize sources and optimize parameters with
= expectation maximization ( )
= method of moments ( )
= ¢.g, Gaussian mixture models (

e otherwise we need a nonparametric estimation
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Density Estimation from samples
)

e Kernel density estimation ( ;

o y(x) = N% fo’zl k (x_—}fn) is the KDE from samples s”

e k is the kernel and h 1s the bandwidth

[Jhistogram
e KDE
sample

probability density

X
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Higher Order KDE & Tensors

o If independent teatures

s store discretized 1-dim KDEs for
each sink ¢ and feature j in Y ;;.

I Y[1 ]

e Doing it this way, reduces the size
of the data

= J-dim KDEs' (I of them) is more

¢ .
I ' . expensive to compute than 1.J
T cheeper 1-dim KDEs

Ti Temperature

» JKY to IJK tensor entries
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Higher Order KDE & Tensors

I Y[1 ]

Contributions / advancements

e Perform this source seperation on all
features jointly

e Model that scales well to arbitrary
number of features J

e Size of problem is independent of
number of samples collected
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Source separation model

min {K(A,B) — LY — AB|2|A € A4, Be AB}

2 .
|-||% squared Frobenius norm (sum-of-squares)
A A non-negative entries & rows sum to 1

Ap non-negative entries & fibres B;;; sum to 1

e Nonnegativity implies it’s NP hard! =
e Simplex implies a bounded feasible set &

e Not convex, but block-convex and smooth

Density Separation with Tensor Factorization
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Block Coordinate Descent

e Alternatly update A and B via projected gradient descent!

= A" = Pp, (A" — A Val(A',BY))

- Bitl — Pa, (B — L—lBVBf(AtH,Bt))
e Convergence to nash equilibria (A", B*)

= block-wise min: £(A", B*) < min (/(A",B),4(A,B"))
o Also stationary: 0 € O(£ + da, xa, ) (A", B*)
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Rescaling trick
e Relax constraints to

= A>0,B>0

n % > it Brik = Lforallr (vs } ;. Brj, = 1 for all 7, j)
e Updates now look like:

- At—|—1/2 (At . —VAE(A.t Bt))

Bt—|—1/2 (Bt o —VBE(AH_l/z, Bt))_|_
. Bt—‘,—l _ C—lBt—|—1/2 and At—|—1 _ At—|—1/2C
= where Cf,«r — % ij Brjk
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Rescaling vs simplex projection

e Compare stationary condition dist (0, (£ + d>¢)(A, B))
every iteration for different constraint methods

=
<

distance to stationary
=
oI

0 500 . . 1000 1500
1teration
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Estimating the rank

e Trymanyranks R =1,..., Rpnax

e Compare the objective as a function 3|

of the rank

{(R) = |[Y — ArBg|[p

e Occam s Razor: Trade off between
simple model (low rank R) and

explanatory power (larger R) L

standard curv re
of final lo
(]

e Select point of maximum curvature

—
T

argmaxp £’ (R)/(1+ ¢ (R)?*)'®

1} J
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Results
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Application 1: Geology

,;},OQ features—
{\
™ . sources—

2.

- ©,
3 =
l v

measured distributions mixing proportions
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Application 1: Geology
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http://dzgrainalyzer.eoas.ubc.ca

Misfit versus Ranks

Residual misfit between empirical variables {Y) and reconconstructed variables (A B)

0z

0.13

relative error

01

rank

Learned Kernel Density Estimates

* PNG B svG

density
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PNG SVG - Selected Rank: B e
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Optimum rank identified as the maximum standard curvature in this graph.
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Application 2: Transcriptomics

e constraint modification: horizontal slices are normalized

Zj,k Br,j,k =1Vr

x-location—

/! .
x-location—
cell types — /
NS 0o '
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— 3
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Application 2: Transcriptomics
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Application 3: Music Decomposition

e constraint modification: horizontal slices are max-normalized
max, Br,j =1Vr

frequency — note — frequency —

«— aumn
«— ouun
«— dj0Uu
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Summary

e Combine KDE with Tucker-1 factorization into a scalable
nonparametric density decomposition method

e Algorithm converges to block-minimum and stationary point
= Open-source Julia code on GitHub: MatrixTensorFactor,jl

e Practical model applicable to many areas
= geology, genetics, music, etc.

e Expanding code for more decompositions,
faster convergence along cts. dimensions

Paper & Code
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What features did we look at?

e age

e Eu anomaly

e Ti-based crystallization temperature
e Th-U ratio

e sum of light rare-earth elements over heavy rare-earth
elements (XLREE/XHREE)

e Dy-Yb ratio
e normalized (Ce/ND)/Y ratio
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Convergence Details

e when iterates are bounded iterates

= there are limit points

= know this because feasible set 1s bounded
e when the objective function 1s KL

= sequence of iterates converges to a finite limit point
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How should we format our data?

Example

e When you sample s ~ Y, do the following

= Sample » where » = 1 with probability aq,
and r = 2 with probability as =1 — a;

= Draw a sample from distribution B,
e The distribution of s is the same as a1B; + a1 B>

e So the density function y for distribution )/ 1s equal to
Yy = a1b; + asb,
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Rank robustness

final loss
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