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Motivation & Examples
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Application 1: Geology1

Source locations have their own distribution of minerals

Rocks from these sources are mixed & deposited downstream

Take scoops of rocks at locations downstream, called “sinks”
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Modeling the Physical Problem
Want to “un-mix” the measured sink distribution

Goal: Estimate the mixing proportions and source
distributions
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Application 2: Transcriptomics
Perform single-cell sequencing for
multiple embryos throughout
development

Label cells (heart, brain, etc.) at
each time point

Goal: Given gene expressions at
each cell, cluster cells that have
similar gene expressions
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Modeling the problem
Goal: Learn gene expressions and distribution of each cell
type

8Density Separation with Tensor Factorization



Application 3: Music Decomposition
Rebalance or isolate instruments from a single recording

Learn what each note sounds like (frequency spectrum)

Goal: Separate audio mixture by frequency spectrums
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Modeling Music Decomposition
Take short-time Fourier transform of audio recording

Goal: Learn the frequencies and amplitudes of each note
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Generic Problem
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Joint Signal Decomposition
Given mixtures 

Find mixing coefficients  and sources 

, , … ,y1 y2 yI

aij , , … ,b1 b2 bR

y1

y2

yI

= + + ⋯ +a11b1 a12b2 a1RbR

= + + ⋯ +a21b1 a22b2 a2RbR

⋮
= + + ⋯ +aI1b1 aI2b2 aIRbR
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Other Decomposition Approaches
Parametrised Basis

Fixed basis: 

Fourier and short-time Fourier transform ( )

Wavelets ( ; )

Frame decomposition ( , Ch. 7)

Atomic decomposition ( ; )

Dictionary learning  ( )

Random basis:  where 

Random feature models , where 
( ; )

Sparse random mode decomposition ( )

y = b∑b∈B ab

Gröchenig 2001

Benedetto and Frazier 1993 Daubechies et al. 2011

Benedetto and Frazier 1993

Chen et al. 2001 Fan et al. 2022
∗ Tošić and Frossard 2011

y = ∑r arbr ∼ Bbr

(x) = f(⟨ , x⟩ + )br ωr ϕr ( , ) ∼ Ω × Φωr ϕr

Rahimi and Recht 2008 Hashemi et al. 2023

Richardson et al. 2023
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Other Decomposition Approaches
Parametrised Basis

Great if you know a good basis for your data!

Data becomes sparse in your basis

Basis elements having meaningful interpretations
(e.g. Fourier frequencies)

Otherwise, sources  may not be meaningfulbr
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Other Decomposition Approaches
Data-driven

Intrinsic Mode Functions:  where 

Empirical mode decomposition ( )

Empirical wavelet transform ( )

Variational mode decomposition ( )

Supervised learning: learn parameters  so that 

Convolutional neural networks ( )

Long short-term memory networks ( )

Autoencoders ( )

Dictionary learning ( )

y = ∑r br (t) = (t) sin( (t))br ar ϕr

Huang et al. 1998

Gilles 2013

Dragomiretskiy and Zosso 2014

θ (y) = (Fθ br)r

Zhu et al. 2019

Cao et al. 2019

Karamatlı et al. 2019

Tošić and Frossard 2011
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Other Decomposition Approaches
Data-driven

Intrinsic Mode Functions

Effective for frequency-amplitude modulated sources 

Supervised learning

⭐ State-of-the-art ⭐

Need lots of data with known decompositions

Must retrain on data for each application

br
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Joint Signal Decomposition
Given mixtures 

Find mixing coefficients  and sources 

, , … ,y1 y2 yI

aij , , … ,b1 b2 bR
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Joint Signal Decomposition
Given mixtures 

Find mixing coefficients  and sources 

, , … ,y1 y2 yI

aij , , … ,b1 b2 bR

⎡

⎣

⎢⎢⎢⎢⎢

y1

y2

⋮
yI

⎤

⎦

⎥⎥⎥⎥⎥
=

⎡

⎣

⎢⎢⎢⎢

a11

a21

⋮
aI1

a12

a22

aI2

…
…

…

a1R

a2R

⋮
aIR

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

b1

b2

⋮
bR

⎤

⎦
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Joint Signal Decomposition
Given mixtures 

Find mixing coefficients  and sources 

, , … ,y1 y2 yI

aij , , … ,b1 b2 bR

⎡

⎣
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←

←

←
←

y⊤
1
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2

⋮

y⊤
I

→

→

→
→

⎤

⎦

⎥⎥⎥⎥⎥
=

⎡

⎣
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a11

a21

⋮
aI1

a12

a22

aI2

…
…

…

a1R

a2R

⋮
aIR

⎤

⎦
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⎡

⎣
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←

←

←

b1
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b2
⊤

⋮

bR
⊤

→

→

→
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Our approach
Matrix and Tensor Factorization

Principle component analysis ( ; )

Independent component analysis ( ; )

Nonnegative matrix factorization ( ; )

Tensor decompositions ( )

Why?

Interpretability

Minimal assumptions on sources 

No training step, so less data needed

Unsupervised learning

Pearson 1901 Abdi and Williams 2010

Comon 1994 Hyvarinen 1999

Cohen and Rothblum 1993 Gillis 2020

Kolda and Bader 2009

br
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Tucker-1 Decomposition
A generalization of rank-  matrix factorization    R

Y = AB =Yijk ∑R
r=1 AirBrjk =Yi ∑R

r=1 AirBr
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Tucker-1 Decomposition
A generalization of rank-  matrix factorization    R
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Properties of the model
Should be low rank

Need more mixtures  than sources  ( )

Otherwise, there’s too many solutions for  and 

For example,

has the unhelpful solution  and , where the rest
of of the coefficients  for 

yi br I > R

ar br

y = + + ⋯ +a1b1 a2b2 aRbR

= 1a1 = yb1

= 0ar r = 2, … , R
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Properties of the model
Should be scaled

Need to scale coefficients  or sources  (or both)

Otherwise, decomposition is not unique and unbounded

For example,

for all positive , or  invertible matrix 

Common scales include normalizing columns/rows of  or
slices of 

air br

Y = AB = (cA) ( B) = (AC) ( B)1
c

C−1

c > 0 R × R C

A

B
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Solution Method
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First, we need our densities 
Often cannot measure our mixture densities  directly

Typical problem:

given i.i.d. samples  for 

each distribution  is a convex mixture of the (the same)
source distributions : 

estimate mixing coefficients  and probability density
functions  for the distributions 

In other words, “ ”

yi

yi

∼sn
i Yi n = 1, … , Ni

Yi

BR = + ⋯ +Yi ai1B1 aiRBR

air

br BR

P (s ∼ |s ∼ ) =Br Yi air
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Density Estimation from samples
if we knew what the sources look like…

…parametrize sources and optimize parameters with

expectation maximization ( )

method of moments ( )

e.g, Gaussian mixture models ( )

otherwise we need a nonparametric estimation

Dempster et al. 1977

Pearson 1936

Lindsay and Basak 1993
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Density Estimation from samples
Kernel density estimation ( ; )

 is the KDE from samples 

 is the kernel and  is the bandwidth

Rosenblatt 1956 Parzen 1962

y(x) = k ( )1
Ni

∑Ni

n=1
x−sn

h
sn

k h
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Higher Order KDE & Tensors
If independent features

store discretized -dim KDEs for
each sink  and feature  in 

Doing it this way, reduces the size
of the data

-dim KDEs1 (  of them) is more
expensive to compute than 
cheeper 1-dim KDEs

 to  tensor entries

1
i j Yij:

J I

IJ

IKJ IJK
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Higher Order KDE & Tensors
Contributions / advancements

Perform this source seperation on all
features jointly

Model that scales well to arbitrary
number of features 

Size of problem is independent of
number of samples collected

J
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Source separation model

 squared Frobenius norm (sum-of-squares)
 non-negative entries & rows sum to 1
 non-negative entries & fibres  sum to 1

Nonnegativity implies it’s NP hard1 ☹️

Simplex implies a bounded feasible set 😊

Not convex, but block-convex and smooth

{ℓ(A, B) := A ∈ ,  B ∈ }min
A,B

1
2 ∥Y − AB∥2

F
∣∣ ΔA ΔB

∥⋅∥2
F

ΔA

ΔB Bij:
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Block Coordinate Descent
Alternatly update  and  via projected gradient descent1

Convergence to nash equilibria 

block-wise min: 

Also stationary: 

A B

= ( − ℓ( , ))At+1 PΔA
At 1

LA
∇A At Bt

= ( − ℓ( , ))Bt+1 PΔB
Bt 1

LB
∇B At+1 Bt

( , )A∗ B∗

ℓ( , ) ≤ min (ℓ( , B), ℓ(A, ))A∗ B∗ A∗ B∗

0 ∈ ∂(ℓ + )( , )δ ×ΔA ΔB
A∗ B∗
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Rescaling trick
Relax constraints to

, 

 for all  (vs  for all )

Updates now look like:

 and 

where 

A ≥ 0 B ≥ 0

= 11
J
∑jk Brjk r = 1∑k Brjk r, j

= ( − ℓ( , )At+1/2 At 1
LA

∇A At Bt )+

= ( − ℓ( , )Bt+1/2 Bt 1
LB

∇B At+1/2 Bt )+

=Bt+1 C−1Bt+1/2 = CAt+1 At+1/2

=Crr
1
J
∑jk Brjk
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Rescaling vs simplex projection
Compare stationary condition 
every iteration for different constraint methods

dist (0, ∂(ℓ + )(A, B))δ≥0
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Estimating the rank
Try many ranks 

Compare the objective as a function
of the rank

Occam’s Razor: Trade off between
simple model (low rank ) and
explanatory power (larger )

Select point of maximum curvature

R = 1, … , Rmax

ℓ(R) = ∥Y − ∥ARBR
2
F

R

R

arg (R)/(1 + (RmaxR ℓ′′ ℓ′ )2)1.5
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Results
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Application 1: Geology
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Application 1: Geology
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http://dzgrainalyzer.eoas.ubc.ca
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Application 2: Transcriptomics
constraint modification: horizontal slices are normalized

= 1 ∀r∑j,k Br,j,k
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Application 2: Transcriptomics
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Application 2: Transcriptomics
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Application 3: Music Decomposition
constraint modification: horizontal slices are max-normalized

= 1 ∀rmaxj Br,j
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Summary
Combine KDE with Tucker-  factorization into a scalable
nonparametric density decomposition method

Algorithm converges to block-minimum and stationary point

Open-source Julia code on GitHub: MatrixTensorFactor.jl

Practical model applicable to many areas

geology, genetics, music, etc.

Expanding code for more decompositions,         
faster convergence along cts. dimensions

1

Paper & Code
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What features did we look at?
age

Eu anomaly

Ti-based crystallization temperature

Th-U ratio

sum of light rare-earth elements over heavy rare-earth
elements (ΣLREE/ΣHREE)

Dy-Yb ratio

normalized (Ce/ND)/Y ratio
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Convergence Details
when iterates are bounded iterates

there are limit points

know this because feasible set is bounded

when the objective function is KL

sequence of iterates converges to a finite limit point
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How should we format our data?
Example

When you sample , do the following

Sample  where  with probability 
and  with probability 

Draw a sample from distribution 

The distribution of  is the same as 

So the density function  for distribution  is equal to

s ∼ Y

r r = 1 ,a1

r = 2 = 1 −a2 a1

Br

s +a1B1 a1B2

y Y

y = +a1b1 a2b2
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Rank robustness
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