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Problem Statement

Given an input signal y , decompose it into simple modes.

Want meaningful modes, ex. mode for each acoustic source or

type of oscillation
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And why...?

For signal processing:

• Analysis on simple modes may be easier than the full signal

• Label/identification of modes

• Separate noise from signal (denoising)

• Pre-processing step

For music decomposition specifically:

• Make a karaoke or a cappella track

• Study or re-mix songs (live recordings, historical)

• For easier melodic/harmonic analysis, instrument labelling,

or transcription
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Existing Methods

And their downsides

• Fourier Series/Transform: time information not captured

• Empirical Mode Decomposition: only decomposes into

intrinsic mode functions

• Short-Time Fourier Transform: dense representation,

input must be evenly sampled

• Neural Networks: slow, requires large training set
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Our Method

“Sparse Random Wavelet Signal Representation and Decomposition”

• Signal : 1D Function y(t) : [0, tmax]→ R

• Wavelet: gm(t) = window(t;m) · e ifmt

• Random: wavelets are picked randomly

• Representation: y(t) ≈
∑
m

xmgm(t)

• Sparse: most of xm are zero

• Decomposition: write y(t) as a sum of modes
∑
k

yk(t)
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Method Overview

1. Find sparse representation for y

◦ Compress data

◦ Create clear distinctions between modes

2. Cluster nearby representation elements

◦ Assume modes are connected regions

Advantages:

• Fast & efficient: only input signal is required

• Blind: no side information of signal required

• Can handle unevenly sampled data
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Input

Input: {ti , yi}Ni=1

Given N samples {yi} of a function y(t) at times {ti}

Note the ti ’s do not have to be equally spaced.

Figure: Equally Spaced (top) vs. Random Sampling (bottom)
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Basis Functions

Real Gabor Wavelet

gm(t) = e−2 (t−τm)2

w2 sin(2πfm · t + φm),

τm ∈ U(0, tmax), fm ∈ U(0, fmax), φm ∈ U(0, 2π)

(1)

Figure: Example wavelet (τ, f , φ) = (.2, 10, 1.26)
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Representation Algorithm

via Basis Pursuit Denoising

Algorithm: Sparse Wavelet Representation for y

input: t, y ∈ RN ,M ∈ Z+, w , fmax ∈ R+, r ∈ ]0, 1[

Generate {τm, fm, φm}Mm=1;

Generate M wavelets gm ∈ RN ;

Store wavelets by column in a matrix G ∈ RN×M ;

Solve x∗ = arg min
x∈RM

‖x‖1 s.t. ‖Gx − y‖2 < σ = r‖y‖2;

output: x∗,G , {τm, fm, φm}Mm=1

• L1 norm promotes sparsity

• Optimization is solved via Python’s SPGL1 package
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Reconstruction

Reconstruct y by multiplying wavelets with weights found

y ≈ Gx∗ =
M∑

m=1

xmgm. (2)

Relative error in this representation
‖Gx∗ − y‖2

‖y‖2

is less than r
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Clustering

Plot {τm, fm}Mm=1 where x∗m 6= 0

Goal: cluster points that are close together
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Clustering

Plot {τm, fm}Mm=1 where x∗m 6= 0

Goal: cluster points that are close together
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Decomposition Algorithm

Algorithm: Sparse Representation Decomposition

input: x∗,G , (τm, fm)Mm=1, min samples∈ Z+, ε, s ∈ R+

Define (τmj , fmj )
M′

j=1
:= {(τm, fm)|x∗m 6= 0};

Scale input points to obtain (τmj , s · fmj );

Use DBSCAN to label each point by cluster to obtain {`mj}

where `mj ∈ {−1, 0, · · · ,K − 1};

Extract K modes: yk =
∑
m∈Ik

x∗mgm, Ik = {mj |`mj = k − 1};

output: {yk}K
′

k=1

• Uses DBSCAN algorithm from scikit-learn’s cluster module
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Three Mode Decomposition 1

Uniquely Banded Modes, Evenly Sampled

Input: y(t) = y1(t) + y2(t) + y3(t) defined by,

y1(t) = −2t + sin(10πt + φ1)

y2(t) = sin

(
2π

(
20t +

2

3
sin(4πt)

)
+ φ2

)
y3(t) = (sin(8πt) + 2) sin (80πt + φ3) ,

(3)

where φi ∈ U(0, 2π), t ∈ [0, 1], with N = 160 samples.

Parameters: fmax = 46 Hz,M = 4416,w = 0.1 s, r = 6%

min samples = 5, ε = 2.5, s = 1
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Figure: Segmentation of nonzero wavelets into three modes
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Figure: Decomposition results: full signal and mode 1 of 3 shown.
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Figure: Decomposition results: modes 2 and 3 shown.
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Three Mode Decomposition 2

Noncontinuous and overlapping, Evenly Sampled

Input: y(t) = y1(t) + y2(t) + y3(t) defined by

y1(t) = πt, t ∈ [0, 5/4[

y2(t) = cos(40πt), t ∈ [0, 5/4[

y3(t) = cos

(
4

3

(
(2πt − 10)3 − (2π − 10)3 + 20π(t − 1)

))
, t ∈ ]1, 2].

Parameters: fmax = 80,M = 10 240, r = 5%,w = 0.1 s,

min samples = 5, ε = 0.125, s = 1/80.

Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool; Daubechies, Lu, & Wu;

Applied and Computational Harmonic Analysis, 2011. DOI:10.1016/j.acha.2010.08.002
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https://doi.org/10.1016/j.acha.2010.08.002


Figure: Segmentation of nonzero wavelets into three modes
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Figure: Decomposition results: full signal and mode 1 of 3 shown.
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Figure: Decomposition results: modes 2 and 3 shown.
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Flute and Guitar Decomposition

Input: y(t) = y1(t) + y2(t) where y1(t) is a flute and y2(t) is a

guitar clip around 1.85 s long.

N = 44 100 Hz/8 · 1.85 s ≈ 10 200 samples.

Parameters:

fmax = 44 100 Hz/16,M = 100 000, r = 8%,w = 0.03 s,.

(play examples)
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Figure: Segmentation via slice at f = 480 Hz
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Figure: Decomposition results: modes 1 and 2 shown.
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Figure: Attempted Full Song Decomposition
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Suggested Improvements

Segmentation:

• Group wavelets with similar weights

• Use two step clustering to group harmonics/notes first

• Define new metric where integer multiple frequencies are

considered close

Clustering:

• Higher level basis for more sparsity

• Experiment with LASSO to enforce a given level of sparsity
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Thank you for listening!

Nicholas Richardson

njericha@uwaterloo.ca

Code for Examples
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https://drive.google.com/drive/folders/17ejhFlxdOhFfn1LD5SDrZIdfQo4quJA-?usp=sharing


Additional Decomposition Example

Uniquely Banded Modes, Randomly Sampled

Input: y(t) = y1(t) + y2(t) + y3(t) defined by,

y1(t) = −2t + sin(10πt + φ1)

y2(t) = sin

(
2π

(
20t +

2

3
sin(4πt)

)
+ φ2

)
y3(t) = (sin(8πt) + 2) sin (80πt + φ3) ,

(4)

where φi ∈ U(0, 2π), t ∈ [0, 1], with N = 160 samples.

Parameters: fmax = 46 Hz,M = 4416,w = 0.1 s, r = 6%

min samples = 5, ε = 2.5, s = 1
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Figure: Segmentation of nonzero wavelets into three modes
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Figure: Decomposition results: full signal and mode 1 of 3 shown.
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Figure: Decomposition results: modes 2 and 3 shown.
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Flute and Guitar Decomposition

With Wavelet Clustering

Input: y(t) = y1(t) + y2(t) where y1(t) is a flute and y2(t) is a

guitar clip around 1.85 s long.

N = 44 100 Hz/8 · 1.85 s ≈ 10 200 samples.

Parameters:

fmax = 44 100 Hz/16,M = 100 000, r = 8%,w = 0.03 s,

min samples = 5, ε = 350, s = 1.

(play examples)
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Figure: Segmentation of nonzero wavelets into two modes
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Figure: Decomposition results: modes 1 and 2 shown.
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