Sparse Random Wavelet Signal Representation and Decomposition

Nicholas Richardson

BMath Math Physics '20 MMath Applied Math '22

June 1st, 2021

Joint work with Giang Tran, Hayden Schaeffer & Rachel Ward

Outline

Introduction

Model

Representation

Decomposition

Examples

Mathematical

Musical

Outline

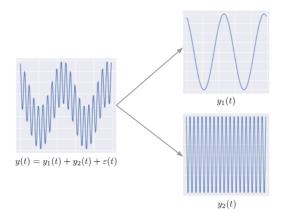
Introduction

Model

Examples

Problem Statement

Given an input signal y, decompose it into simple modes.



Want meaningful modes, ex. mode for each acoustic source or type of oscillation

For signal processing:

- Analysis on simple modes may be easier than the full signal
- Label/identification of modes
- Separate noise from signal (denoising)
- Pre-processing step

For music decomposition specifically:

- Make a karaoke or a cappella track
- Study or re-mix songs (live recordings, historical)
- For easier melodic/harmonic analysis, instrument labelling, or transcription

Existing Methods

And their downsides

- Fourier Series/Transform: time information not captured
- Empirical Mode Decomposition: only decomposes into intrinsic mode functions
- Short-Time Fourier Transform: dense representation, input must be evenly sampled
- Neural Networks: slow, requires large training set

Outline

Introduction

Model

- Representation
- Decomposition

Examples

Our Method

"Sparse Random Wavelet Signal Representation and Decomposition"

- Signal: 1D Function $y(t): [0, t_{\mathsf{max}}] \to \mathbb{R}$
- Wavelet: $g_m(t) = window(t; m) \cdot e^{if_m t}$
- Random: wavelets are picked randomly
- Representation: $y(t) \approx \sum_{m} x_{m}g_{m}(t)$
- *Sparse*: most of x_m are zero
- Decomposition: write y(t) as a sum of modes $\sum_{k} y_k(t)$

Method Overview

1. Find sparse representation for y

- Compress data
- Create clear distinctions between modes
- 2. Cluster nearby representation elements
 - Assume modes are connected regions

Advantages:

- Fast & efficient: only input signal is required
- Blind: no side information of signal required
- Can handle unevenly sampled data

Outline

Introduction

Model

Representation

Decomposition

Examples

Input

Input: $\{t_i, y_i\}_{i=1}^N$ Given N samples $\{y_i\}$ of a function y(t) at times $\{t_i\}$ Note the t_i 's do not have to be equally spaced.

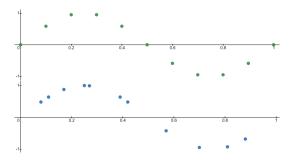


Figure: Equally Spaced (top) vs. Random Sampling (bottom)

Basis Functions

Real Gabor Wavelet

$$g_m(t) = e^{-2\frac{(t-\tau_m)^2}{w^2}} \sin(2\pi f_m \cdot t + \phi_m),$$

$$\tau_m \in \mathcal{U}(0, t_{\max}), f_m \in \mathcal{U}(0, f_{\max}), \phi_m \in \mathcal{U}(0, 2\pi)$$
(1)

Figure: Example wavelet $(\tau, f, \phi) = (.2, 10, 1.26)$

Representation Algorithm

via Basis Pursuit Denoising

Algorithm: Sparse Wavelet Representation for y input: $t, v \in \mathbb{R}^N, M \in \mathbb{Z}^+, w, f_{max} \in \mathbb{R}^+, r \in]0, 1[$ Generate $\{\tau_m, f_m, \phi_m\}_{m=1}^M$; Generate *M* wavelets $g_m \in \mathbb{R}^N$: Store wavelets by column in a matrix $G \in \mathbb{R}^{N \times M}$: Solve $x^* = \arg \min \|x\|_1$ s.t. $\|Gx - y\|_2 < \sigma = r\|y\|_2$; $x \in \mathbb{R}^M$ **output:** $x^*, G, \{\tau_m, f_m, \phi_m\}_{m=1}^M$

- L₁ norm promotes sparsity
- Optimization is solved via Python's SPGL1 package

Reconstruct y by multiplying wavelets with weights found

$$y \approx G x^* = \sum_{m=1}^{M} x_m g_m.$$
 (2)

Relative error in this representation $\frac{\|Gx^* - y\|_2}{\|y\|_2}$ is less than r

Outline

Introduction

Model

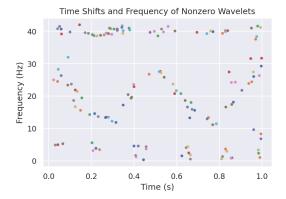
Representation

Decomposition

Examples

Clustering

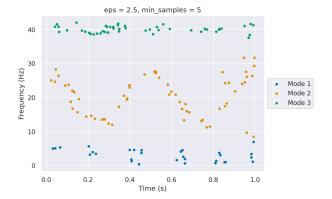
Plot $\{\tau_m, f_m\}_{m=1}^M$ where $x_m^* \neq 0$



Goal: cluster points that are close together

Clustering

Plot $\{\tau_m, f_m\}_{m=1}^M$ where $x_m^* \neq 0$



Goal: cluster points that are close together

Algorithm: Sparse Representation Decomposition input: $x^*, G, (\tau_m, f_m)_{m=1}^M, \min_{samples} \in \mathbb{Z}^+, \epsilon, s \in \mathbb{R}^+$ Define $(\tau_{m_i}, f_{m_i})_{i=1}^{M'} := \{(\tau_m, f_m) | x_m^* \neq 0\};$ Scale input points to obtain $(\tau_{m_i}, s \cdot f_{m_i})$; Use DBSCAN to label each point by cluster to obtain $\{\ell_{m_i}\}$ where $\ell_{m_i} \in \{-1, 0, \cdots, K-1\};$ Extract *K* modes: $y_k = \sum x_m^* g_m, I_k = \{m_i | \ell_{m_i} = k - 1\};$ $m \in I_{l}$ **output:** $\{y_k\}_{k=1}^{K'}$

• Uses DBSCAN algorithm from scikit-learn's cluster module

Outline

Introduction

Model

Examples

- Mathematical
- Musical

Introduction

Model

Examples Mathematical Musical

Three Mode Decomposition 1

Uniquely Banded Modes, Evenly Sampled

Input: $y(t) = y_1(t) + y_2(t) + y_3(t)$ defined by,

$$y_{1}(t) = -2t + \sin(10\pi t + \phi_{1})$$

$$y_{2}(t) = \sin\left(2\pi\left(20t + \frac{2}{3}\sin(4\pi t)\right) + \phi_{2}\right)$$
(3)

$$y_{3}(t) = (\sin(8\pi t) + 2)\sin(80\pi t + \phi_{3}),$$

where $\phi_i \in \mathcal{U}(0, 2\pi), t \in [0, 1]$, with N = 160 samples.

Parameters: $f_{max} = 46 \text{ Hz}, M = 4416, w = 0.1 \text{ s}, r = 6\%$

 $\texttt{min_samples} = 5, \epsilon = 2.5, s = 1$

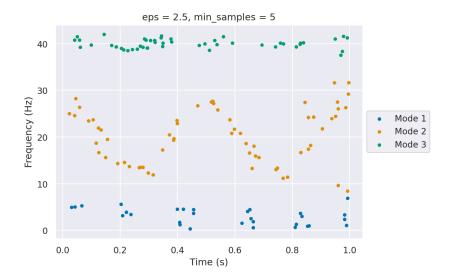


Figure: Segmentation of nonzero wavelets into three modes

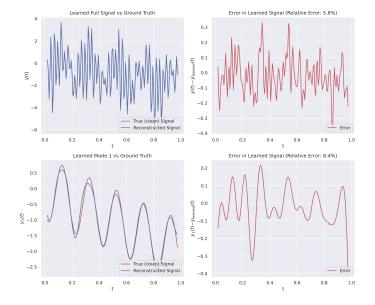


Figure: Decomposition results: full signal and mode 1 of 3 shown.

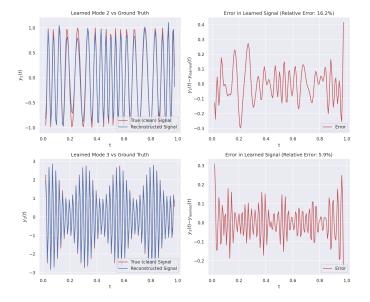


Figure: Decomposition results: modes 2 and 3 shown.

Three Mode Decomposition 2

Noncontinuous and overlapping, Evenly Sampled

Input: $y(t) = y_1(t) + y_2(t) + y_3(t)$ defined by

$$egin{aligned} y_1(t) &= \pi t, \ t \in [0, 5/4[\ y_2(t) &= \cos(40\pi t), \ t \in [0, 5/4[\ y_3(t) &= \cos\left(rac{4}{3}\left((2\pi t - 10)^3 - (2\pi - 10)^3 + 20\pi(t - 1)
ight)
ight), \ t \in]1,2]. \end{aligned}$$

Parameters: $f_{max} = 80, M = 10240, r = 5\%, w = 0.1 s$, min_samples = 5, $\epsilon = 0.125, s = 1/80$.

Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool; Daubechies, Lu, & Wu; Applied and Computational Harmonic Analysis, 2011. DOI:10.1016/j.acha.2010.08.002

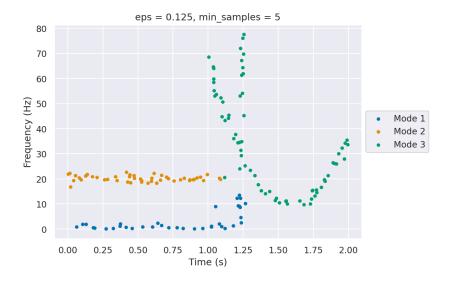


Figure: Segmentation of nonzero wavelets into three modes

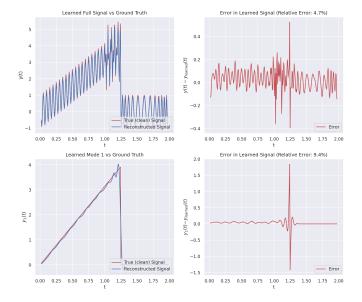


Figure: Decomposition results: full signal and mode 1 of 3 shown.

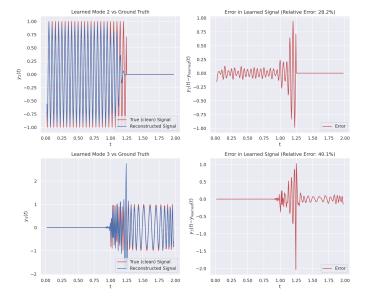


Figure: Decomposition results: modes 2 and 3 shown.

Introduction

Model

Examples

Mathematical

Musical

Input: $y(t) = y_1(t) + y_2(t)$ where $y_1(t)$ is a flute and $y_2(t)$ is a guitar clip around 1.85 s long.

 $N = 44\,100\,{\rm Hz}/8\cdot 1.85\,{\rm s} \approx 10\,200$ samples.

Parameters:

 $f_{max} = 44\,100\,\text{Hz}/16, M = 100\,000, r = 8\%, w = 0.03\,\text{s},.$ (play examples)

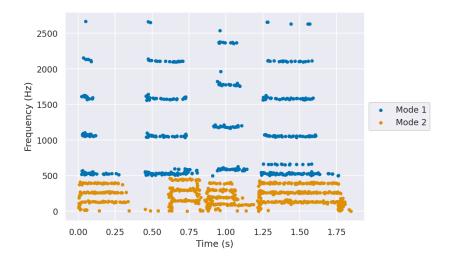


Figure: Segmentation via slice at f = 480 Hz

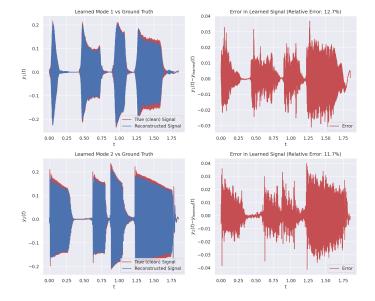


Figure: Decomposition results: modes 1 and 2 shown.

Outline

Introduction

Model

Examples

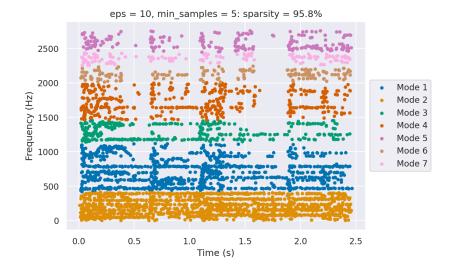


Figure: Attempted Full Song Decomposition

Segmentation:

- Group wavelets with similar weights
- Use two step clustering to group harmonics/notes first
- Define new metric where integer multiple frequencies are considered close

Clustering:

- Higher level basis for more sparsity
- Experiment with LASSO to enforce a given level of sparsity

References

Deep Learning for Audio Signal Processing Purwins et. al. arXiv:1905.00078 Generalization Bounds for Sparse Random Feature Expansions Hashemi, Schaeffer, Shi, Topcu, Tran, & Ward arXiv:2103.03191 Sparse Optimization with Least-Squares Constraints Louhichi et al. DOI:10.1137/100785028 A density based algorithm for discovering clusters with varied density van den Berg & Friedlander

DOI:10.1109/WCCAIS.2014.6916622

Thank you for listening!

Nicholas Richardson

njericha@uwaterloo.ca

Code for Examples

Additional Decomposition Example

Uniquely Banded Modes, Randomly Sampled

Input: $y(t) = y_1(t) + y_2(t) + y_3(t)$ defined by,

$$y_{1}(t) = -2t + \sin(10\pi t + \phi_{1})$$

$$y_{2}(t) = \sin\left(2\pi\left(20t + \frac{2}{3}\sin(4\pi t)\right) + \phi_{2}\right)$$
(4)

$$y_{3}(t) = (\sin(8\pi t) + 2)\sin(80\pi t + \phi_{3}),$$

where $\phi_i \in U(0, 2\pi), t \in [0, 1]$, with N = 160 samples. Parameters: $f_{max} = 46$ Hz, M = 4416, w = 0.1 s, r = 6%min_samples = 5, $\epsilon = 2.5, s = 1$

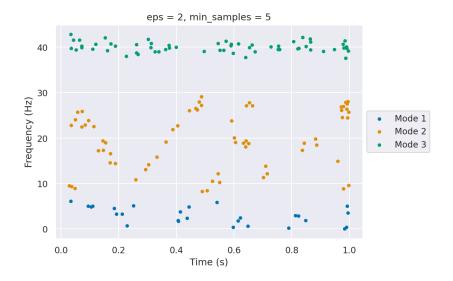


Figure: Segmentation of nonzero wavelets into three modes

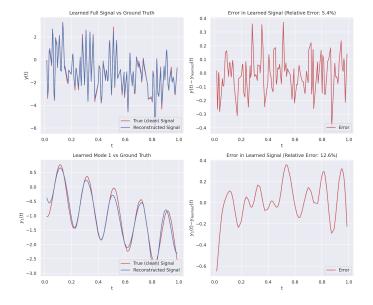


Figure: Decomposition results: full signal and mode 1 of 3 shown.

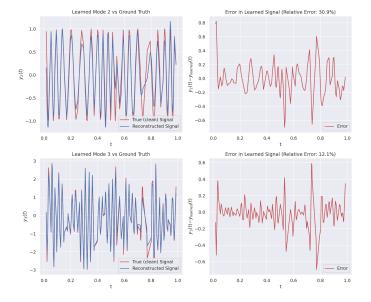


Figure: Decomposition results: modes 2 and 3 shown.

Flute and Guitar Decomposition

With Wavelet Clustering

Input: $y(t) = y_1(t) + y_2(t)$ where $y_1(t)$ is a flute and $y_2(t)$ is a guitar clip around 1.85 s long.

 $N = 44\,100\,\text{Hz}/8 \cdot 1.85\,\text{s} \approx 10\,200$ samples.

Parameters:

 $f_{\max} = 44\,100\,\text{Hz}/16, M = 100\,000, r = 8\%, w = 0.03\,\text{s},$ min_samples = 5, $\epsilon = 350, s = 1.$ (play examples)

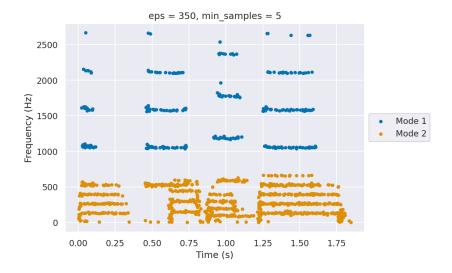


Figure: Segmentation of nonzero wavelets into two modes

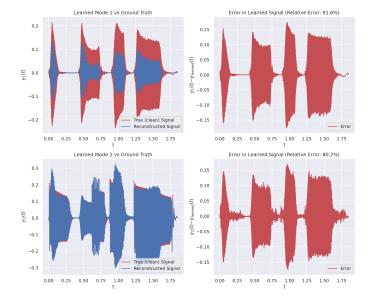


Figure: Decomposition results: modes 1 and 2 shown.