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| Abstract

We propose a signal demixing framework and implementation in Julia using constrained
tensor factorization. We use this tool to separate real signal mixtures in applications like
geology, biology, and music without prior supervised training.

Il Setting: Multiple Unlabeled Mixtures

Unmix {y,} into a small number of unknown sources {b,.} with unknown weights {a;, }:
Y1 = a;1by +apby + ... +a gbp

' (1)

yr =apb; +apby + ... +agbg.

Mixtures can be multivariable functions y, : RY — Ror directly measured vectors, matrices,
or tensors y,|jy, ---, jn]- Either way, we package the data into a tensor Y by sampling the
mixtures {y,} or stacking the observations:

Y(i,j1, - Inl = yi(@ 1], - 2nlin]) or yilii, - dnl- (2)

11l Model: Tucker-1 Tensor Factorization

Factorize Y into a mixing matrix A times a source tensor B using the Tucker-1 model [1]:
Y - AB

R
Vlidy, gl = 3 Aliy 7] Blr, o, oor i) 3

Figure 1: Example Tucker-1 decomposition for a 3rd-order tensor.

IV Method: Least-Squares Optimization

Rather than directly computing a factorization Y = AB, we minimize the error between the
model AB and the data Y:

1
milrglﬁ(A, B) := §||AB —Y|% s.t AelCy,BeCCg. (4)

A

Y

Constraint sets €4 and Cg are application dependent. For example, if want to ensure mix-
tures Y|, ...] are convex combinations of sources B|r, ...], rows of A should be nonnegative
and sum to one,

AcCy={AcRXE|Y" Alir]=1fori=12,.,I}. (5)
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V Algorithm: Block Projected Gradient Descent
Alternately update A and B with projected gradient descent [2]:

o (4 9 )
A

1
B+ = P, (Bt — 7= Vgl(A, Bt)).
B

This converges to a block-wise minimum and stationary point,

¢(A",B") < AGGT%E@B{e(A*, B),¢(A,B")}. (7)

VI Application: Geological Sediment Analysis
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Figure 2: Input data tensor Y. Each 3-fibre Y|4, 7, :] is a discretized probability density for
a different geological feature. The decomposed source distributions can be used to classify
grains. See our paper in Mathematical Geosciences 3], and implementation on GitHub [4].

VII Application: Spatial Transcriptomics
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Figure 3: Spatial transcriptomics factorization model. Spatial distribution of many genes can
be decomposed into few cell types. We uncover the gene expression and spatial distribution
of these cell types, and can label distinct regions accordingly.
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VIII Application: Musical Instrument Separation
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Figure 4: Audio source separation model. The short-time Fourier transform of a mixture
can be separated into harmonically distinct notes. These can be grouped by their spectral
similarity to recover instrument sources.

IX Implementation: BlockTensorDecomposition.jl

The following is an example call to factorize a tensor Y with our Julia package

BlockTensorDecomposition. jl [4] where the 1st-order slices must be nonneg-

ative and sum to one.

simplex 1lslices! = ProjectedNormalization(isnonnegative sumtoone,
projsplx!; whats normalized=(x -> eachslice(x; dims=1)))

factorize(Y;rank=R,model=Tuckerl,constraints=simplex lslices!)

X Current Development: Multi-Scaled Decomposition
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Figure 6: Rather than discretizing the mixtures {y,} on a fine grid from the start, optimize
over cheaper, coarse discretizations with fewer points. Then gradually refine.
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